
ABSTRACT: To address the problem of predicting the safe mud window in China's TH oil field, we 
present a feasible seismic-based workflow that employs machine learning. Initially, multiple drilling 
fluid and mud loss engineering records were used to establish secure mud density windows for eight 
distinct wells with differing depths. Then, the well logs served as the link between drilling fluid 
density and through-well seismic data, and the relationship between drilling fluid density and seismic 
data was constructed using machine learning techniques involving ensemble learning. Finally, a 3D 
distribution model of safe drilling fluid density is generated, and its dependability is evaluated. The 
results of one validation well indicate that the model's complete blind test accuracy exceeds 75%. 
The model has a transverse resolution of 25 meters and a longitudinal resolution of 15 meters. It may 
offer theoretical guidance for devising drilling fluid density and wellbore construction. 
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1 INTRODUCTION 

The safe mud window (SMW) is the permissible drilling mud weight range. Keeping the mud weight 
below the SMW limits would assist in preventing a number of significant wellbore issues, such as 
wellbore instability, decreased circulation, pipe sticking, etc. The SMW is defined by the minimal 
mud weight below which shear failure (breakout) is possible (MWBO) and the maximum mud 
weight beyond which tensile failure (breakdown) is possible (MWBD) (Gowida et al., 2022). Most 
carbonate formations have a restricted SMW due to the presence of multiple leakage zones, such as 
vugs, fractures, and caverns, as well as locally developed complex shale, sandstone, and mudstone. 
Maintaining mud circulation control requires balancing wellbore and formation pressure by 
regulating mud weight (Tan et al., 2020; Tan et al., 2021). Before drilling, it is crucial to accurately 
anticipate the SMW in carbonate formations. 

Nowadays, SMW prediction methods primarily fell into three categories: The first approach is 
the empirical formula method, which is utilized most frequently. This method involves calculating 
and expressing various pressure profiles, such as pore pressure, collapse pressure, fracture pressure, 
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and leakage pressure, in terms of equivalent mud weight, with pore pressure or collapse pressure 
typically serving as the lower limit of SMW and fracture pressure or leakage pressure serving as the 
upper limit of SMW. The representative methods are the Hubbert-Willis formula (Hubbert and 
Willis, 1957), the Matthews and Kelly formula (Matthews, 1967), the Eaton formula (1969), the 
Zoback formula (1984), and the Huang equation (1984). The second method is numerical simulation, 
which is primarily used to predict the SMW after the formation structure type has been determined. 
Combination modes employing continuous and discrete coupling models are extensively used in this 
method for a variety of structures. Representative continuity models include Lavrov's model (Lavrov 
et al. 2006), Majidi's model (Majidi et al. 2010), and Gulbransen's model (Gulbransen et al. 2010). 
In addition, the representative discrete model comprises the models of Yao (Yao et al., 2010), Wang 
(Wang et al., 2020), and Wei (Wei et al., 2022). In recent years, with the development of artificial 
intelligence and machine learning, a new technique for SWM prediction has emerged, which is 
gradually becoming the third most prominent method. In contrast to the model of the mechanism 
established by conventional methods, this method primarily employs data-driven models. (Noshi and 
Schuster, 2018) The method has unique advantages for coping with the uncertainty of drilling 
complex problems, identifying hidden patterns, and revealing useful information. Geng et al. (2019) 
used machine learning to predict the risk of soil loss based on seismic attributes. Ding et al. (2021) 
predicted sediment loss in a fractured formation using post-stack seismic data. Using machine 
learning, Pang et al. (2022) predicted sediment loss rates and evaluated their dependability based on 
seismic data. Using machine learning, mud recording data are also used to predict or diagnose mud 
loss (Pang et al., 2021). 

In this paper, we propose a practicable method for predicting the SMW in China's TH oil field. 
Using machine learning, the SMW of drilled wells and post-stack seismic data are linked. Using the 
post-stack seismic data, the SMW of pre-drill wells can then be predicted, providing theoretical 
guidance for mud loss prevention and control. 

2 METHODLOGY 

The TH Oilfield, located in the northern Tarim Basin of Xinjiang, is China's first 100-million-ton 
Palaeozoic marine oil field. Drilling reveals that the carbonate stratigraphic structure of the TH 
oilfield is complex, resulting in additional downhole complexity. In each layer's pressure system, 
there are significant issues with elevated in-situ stress and radial stress imbalances. The formation's 
integrity is compromised, the condition of the stress distribution is ambiguous, and the SWM is 
difficult to determine. 

 
Figure 1. The workflow of SMW prediction. 

In undrilled areas, only seismic data can be used to anticipate the SMW, as opposed to well logging 
data. However, the poor longitudinal resolution and time domain of post-stack seismic data makes it 
challenging to establish a one-to-one correspondence with drilling engineering records. The seismic 
track data were extracted and matched with SWM (comprehensive logging calculation results and 

-2201-



actual drilling engineering documents) based on time-depth relationships. The relationship between 
seismic data and SWM was determined using machine learning, and the original post-stack seismic 
data was replaced with sediment density to achieve an accurate prediction of SWM. Figure 1 depicts 
the workflow of the technical procedure. 

2.1 Data Preparation 

Post-stack seismic data primarily consists of amplitude information. Figure 1 depicts the distribution 
of seismic amplitude data in the study area. Figure 2 demonstrates that the amplitude value falls 
within the range of -2500 to 2500 and follows a normal distribution. 

 
Figure 2. Distribution of post-stack seismic data. 

Pore pressure is typically used as the lower limit of the sediment density window for carbonate 
reservoirs, while rupture pressure is the upper limit. During new drilling, the aforementioned data 
are typically derived from well logging calculations of neighboring wells and adjusted to account for 
the actual situation. Table 1 presents the pore pressure, fracture pressure equivalent mud density, and 
actual mud density of various strata in the study area. 

Table 1. Drilled well pressure profile information. 

Formation MD,  
m 

Pore pressure 
equivalent density, 

g/cm3 

Fracture pressure 
equivalent density, 

g/cm3 

Actual drilling 
fluid density, 

g/cm3 
Q～N2k 10.5-1998 1.07~1.09 1.83~1.94 1.09~1.10 

N1k -2973 1.10 1.88~1.96 1.10~1.12 
N1j -3391 1.13 1.89~1.96 1.12~1.14 

E3s～E1-2km -3538 1.13 1.89~1.98 1.12~1.14 
K1～T -5067 1.09~1.14 1.87~1.98 1.14~1.28 

C1kl～C1b -5500 1.10~1.15 1.87~1.98 1.28~1.30 
O1-2y -5620 1.05~1.07 1.88~1.98 1.13 

2.2 Machine Learning Model 

Ensemble learning improves machine learning outcomes by combining multiple models, which 
facilitates greater predictive performance than a single model. Friedman (2001) describes Gradient 
Boosted Decision Trees (GBDT) as an extension of boosting to loss functions with indeterminate 
differentiation. GBDT is a precise and efficient off-the-shelf technique applicable to regression and 
classification issues in a variety of disciplines. Safe mud window prediction is a regression problem, 
and GBDT is also known as Gradient-Boosted Regression Trees (GBRT) for regression problems. 
The GBRT diagram is displayed in Figure 3. 
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Figure 3. Diagram of GBRT. 

GBRT regressors are additive models with the following form of prediction for a given input: 
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Where, the mh  are estimators called weak learners in the context of boosting. Gradient Tree Boosting 
uses decision regressors of fixed size as weak leaners. The constant M corresponds to the number of 
estimators. 

Like other boosting algorithms, a GBRT is built in a greedy fashion: 
 ( ) ( )1 ( )m m mF x F x h x−= +  (2) 
Where, the newly added tree mh  is fitted to minimize a sum of losses, given the previous ensemble: 
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Where, ( ), ( )i il y F x is the loss function. 

By default, the initial model is chosen 0F  as the constant that minimizes the loss: for a least-
squares loss, this is the empirical mean of the target values. The initial model can also be specified 
via the initial argument. 

Using a first-order Taylor approximation, the value of l  can be approximated as follows: 
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 is the derivative of the loss with respect to its second 

parameter, evaluated at 1( )m iF x− .  
It is easy to compute for any given 1( )m iF x−  in a closed form since the loss is differentiable. 

We will denote it by ig . 
Taking out the constant terms, we get: 

 ( )
1

arg min
n

m i ih i
h h x g

=

≈ ∑  (5) 

This is minimized if ( )ih x  is fitted to predict a value that is proportional to the negative gradient 

ig . Therefore, at each iteration, the estimator mh  is fitted to predict the negative gradients of the 
samples. Every iteration updates the gradients. This can be thought of as a gradient descent in a 
functional space. 

In accordance with the aforementioned formulations, the sample set is generated by extracting 
the amplitude data of the seismic track of a single feature well and matching the amplitude data with 
the pressure profile data of a single well using the time-depth relation. 

-2203-



2.3 Model Evaluation 

The evaluation of model deviations and predictive ability to determine the model's performance is 
depicted in Figure 4. Figure 4 (a) depicts the train and test error for each iteration. Therefore, 50 is 
the optimal number of boosting interactions. Figure 4 (b) depicts the validation outcomes of a single 
random well with an overall blind test accuracy of over 75%. 

 
Figure 4. Model evaluation. 

3 RESULT AND DISCUSSION 

Figure 5 illustrates the final forecast results, where 5 (a) is a three-dimensional representation of the 
safe mud density and 5 (b) is a representation of the safe mud density along the crossline profile and 
the depth profile, allowing for the optimization of well placement and wellbore trajectory. The 
calculation and prediction results of a single well are depicted in Figure 5 (c). The figure 
demonstrates that the method can be used to predict the presence of safe mud density in undrilled or 
drilled areas. 

 
Figure 5. SMW prediction results. 

4 CONCLUTION 

(1) SWM can be predicted by comparing amplitude data with mud density data, as amplitudes 
disclose stratigraphic characteristics. 
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(2) The GBDT is superior at predicting SWM, and its ability to accurately characterize data makes 
it valuable for predicting mud density. 

(3) The limitation of the prevalent seismic frequency renders the resolution of prediction results 
inadequate. However, seismic data remain the only viable approach for predicting SWM. 
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