
ABSTRACT: In rock mechanics, various situations are known where one may need a viscoelastic – 
rather than elastic – modelling. Examples include laboratory cyclic loading experiments, the 
Anelastic Strain Recovery method for determining in situ stress, and a recent new such area is the 
gravitational effect of waves (seemingly small but actually considerably relevant mass 
rearrangements) around underground gravitational wave detectors. It is also known that temperature 
influences the mechanical processes through thermal expansion, modifying strains and 
displacements and inducing thermal stresses. In certain cases, heat conduction – which determines 
the distribution of temperature – must also be incorporated in the description. Modelling these aspects 
poses a serious challenge. We present a thermodynamically consistent framework with a viscoelastic 
material model that captures these complex, coupled phenomena in a unified way. Our corresponding 
self-developed numerical scheme is able to predict the aforementioned thermo-viscoelastic effects 
for various scenarios reliably, with low resource demand. 
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1 INTRODUCTION 

Investigating measured time dependence of stress, strain and displacement reveals that rocks exhibit 
rate-dependent behavior – including, among others, the observation that dynamic elastic moduli are 
higher than their static counterparts (Davarpanah et al. 2020) –, which raises the need for viscoelastic 
modelling (Asszonyi et al. 2015). Apart from a limited range of problems where analytical 
approaches are feasible (see, e.g., Fülöp & Béda 2010, Fülöp & Szücs 2020, Fülöp & Szücs 2022), 
this in itself raises the need for numerical solutions. Experience also shows that thermal expansion 
may considerably influence strains and, in such cases, a rheologically extended thermoelastic 
description is required – for example, for the Anelastic Strain Recovery method (Matsuki & Takeuchi 
1993, Matsuki 2008, Lin et al. 2010). The involved temperature field is influenced by heat 
conduction, which might also need to be coupled. These altogether demand a reliable numerical 
solver. 
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Figure 1. Purely elastic wave propagation in two dimensions, snapshot of the distribution of displacement, 
the same problem solved with ten different settings in the finite-element software COMSOL (Pozsár et al. 

2020). Which outcome may be the closest to the correct solution pattern? 

Our experience has shown that standard commercial software solutions are not suitable for such tasks 
(see Figure 1). This has motivated us to develop an own finite-difference approach (Fülöp et al. 2020, 
Pozsár et al. 2020, Fülöp 2021), which is a thermodynamically consistent extension of a symplectic 
scheme. For reversible systems, symplectic schemes (see, e.g., Hairer 2006, Denker 2021) possess 
outstanding properties, and our extension has successfully preserved much of them. 

2 CONTINUUM MODEL AND DISCRETIZATION IN ONE DIMENSION 

For a one-dimensional setup, our set of equations to solve is as follows. 
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Here 𝜚𝜚, 𝐸𝐸, 𝑐𝑐ex, 𝜆𝜆, 𝛼𝛼, 𝜏𝜏, 𝐼𝐼 denote the density, Young’s modulus, specific heat capacity, heat conduction 
coefficient, linear thermal expansion coefficient, relaxation time, and index-of-damping material 
parameters, respectively. Additionally, 𝑣𝑣 denotes the velocity field, 𝐿𝐿 the velocity gradient, 𝜎𝜎 the 
Cauchy stress decomposed into a 𝜎𝜎el elastic and a 𝜎𝜎� irreversible part, 𝐸𝐸 the elastic deformedness or 
elastic strain (Nowacki 1986 and Hetnarski & Eslami 2009; see also Lubarda 2004), 𝜖𝜖 the total strain, 
𝑇𝑇 the absolute temperature, 𝑇𝑇ex the expansion-point reference temperature, 𝑗𝑗𝑒𝑒 the heat current density, 
𝑠𝑠 the specific entropy, 𝜋𝜋𝑠𝑠 the entropy production rate density, and 𝑗𝑗𝑠𝑠 the entropy current density, 
respectively. Finally, 𝑒𝑒total is the total specific energy, which is the sum of the 𝑒𝑒kin specific kinetic, 
and 𝑒𝑒int specific internal energies, the latter of which being equal to the sum of the 𝑒𝑒therm specific 
thermal, 𝑒𝑒el specific elastic, and 𝑒𝑒rheol specific rheological energies. 

The extended symplectic finite-difference scheme for these continuum equations can be 
summarized as shown in Figure 2. Solutions prove reliable, as demonstrated in Figures 3 and 4. 

Figure 2. The finite-difference scheme. Grey quantities are auxiliary, not final solution values. 

Figure 3. The distribution of temperature as the function of time along a one-dimensional sample after a 
single-pulse excitation imposed at one end. Temperature increase is due to viscoelastic dissipation, and 

homogenization of temperature is caused by heat conduction. 
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Figure 4. Plotting the various energies as the function of time proves to be a suitable means for monitoring 
the quality of the solution. The numerical scheme preserves total energy satisfactorily. 

3 EXTENSION TO THREE-DIMENSIONAL CYLINDRICAL SETTINGS 

The extension of the scheme to three-dimensional cylindrical sample geometries uses the 
discretization pattern as shown in Figure 5. As application, one of our motivations has been to 
simulate Resonant Frequency Method (see, e.g., Malhotra & Carino 2004) outcomes as visible in 
Figure 6. The numerical results prove to successfully produce the typical observed patterns, as 
illustrated in Figure 7. 

Figure 5. Velocity values (triangles), diagonal stress and strain values (circles), and offdiagonal stress and 
strain values (squares) in the cylindrical discretization. Void symbols represent boundary-condition values. 
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Figure 6. Device (left) and typical outcome (right) of the Resonant Frequency Method (Kovács et al. 2015). 

Figure 7. Simulation result for the Resonant Frequency Method. 

4 CONCLUSION 

The self-developed, explicit finite-difference extended symplectic numerical scheme for the heat-
conduction coupled thermo-viscoelastic model yields reliable predictions, with low resource 
demand. Planned future application areas are simulations for laboratory cyclic loading experiments, 
higher-precision evaluation for the Anelastic Strain Recovery method, exploitation of the Resonant 
Frequency Method for determining viscoelastic material parameters, and the gravitational effect (the 
so-called Newtonian noise) of waves around underground gravitational wave detectors. 
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