
ABSTRACT: During the construction of underground excavations, the development of excavation 
damage zones (EDZs) is a crucial factor in designing permeability-sensitive excavations, such as 
deep geological repositories for nuclear waste. In this study, regression and classification machine 
learning (ML) models were employed. Specifically, k-nearest neighbors (KNN) and multi-layer 
perceptron (MLP) were used for both models. The aim of the regression ML models was to predict 
the depth of damage based on the maximum tangential stress around the opening and the crack 
initiation (CI) threshold. In contrast, the classification ML models aimed to determine different EDZ 
zones using the same features. After comparing the ML models with each other and with the 
traditional regression approach, it was concluded that MLP outperforms KNN for both models. 
Moreover, MLP exhibits consistency with the traditional regression lines. Thus, MLP can be 
effectively utilized for regression in higher-dimension modeling with a greater number of features. 

Keywords: Excavation Damage Zones, Machine Learning, Regression, Classification, K-Nearest 
Neighbor, Multi-Layer Perceptron. 

1 INTRODUCTION 

Excavation of an underground opening results in changes in the geomechanical properties of the rock 
surrounding the opening. During the construction process, excavation-induced cracks are initiated 
and expand into the rock once the stress concentration exceeds the rock’s failure strength. This 
continues until a new stress equilibrium condition is reached. Excavation Damage Zones (EDZs) 
have been studied for a long time (Kelsall et al. 1984). It is crucial to have a good understanding of 
the degree and extent of the EDZs for designing deep geological repositories for nuclear waste 
(Olsson & Winberg 1996), since the new cracks change the permeability of the rock.  

Empirical methods are used in a variety of ways, for example, to estimate rock mass strength and 
to establish rock mass classes based on RMR or GSI. Machine Learning (ML) algorithms are well 
suited to learning underlying patterns in large data sets. For example, a convolutional neural network 
study for predicting tunnel liner yield demonstrates the benefit of ML (Morgenroth et al. 2022). ML 
algorithms are beginning to be leveraged for subsurface applications opening research opportunities. 
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2 EXCAVATION DAMAGE ZONES (EDZS)  

Understanding the depth of damage around an excavation is crucial for the design of any type of 
underground space, as it can be associated with the stability of the structure. Moreover, in the case 
of deep geological repositories, where the damage zone can increase permeability and form a 
potential flow pathway for contaminants, it is critical to determine the depth of damage. The 
continuous connectivity of the EDZ parallel to the excavation axis could lead to a breach of the 
geological barrier should radionuclides breach any of the various engineered barriers present in a 
repository (Perras & Diederichs 2016). As shown in Figure 1 the excavation damage zones can be 
divided into five regions. The damage that is induced during construction due to blasting or other 
construction tools form the construction damage zone (CDZ). The region where damage is observed 
as interconnected macro-fractures is known as the highly damage zone (HDZ). The region with 
connected micro-damage and significant dilation is referred to the inner excavation damage zone 
(EDZi) and the region with partially connected to isolated micro-damage that has no significant 
dilation is called the outer excavation damage zone (EDZo). Beyond the EDZo region is the 
excavation influence zone (EIZ), where only elastic changes occur (Perras & Diederichs 2016). 

 
Figure 1. Schematic representation of the EDZs around an underground opening. 

In-situ measurement of the EDZs from a variety of case studies compiled by Perras & Diederichs 
(2016) are presented in Figure 2, where the maximum tangential stress is normalized by the crack 
initiation (CI) threshold and plotted against the depth of damage that is normalized by the radius of 
the tunnel. Martin et al. (1999) originally introduced a linear empirical depth of failure criteria then 
Diederichs (2007) expanded the empirical dataset and demonstrated mechanistically that a linear 
depth of failure was best predicted when normalizing by CI rather than UCS. Perras & Diederichs 
(2016) discussed how these linear depth of failure equations mostly divided the EDZi from EDZo. 
As shown in Figure 2, there is a divergence from the linear empirical depth of failure by Diederichs’ 
(2007) as the 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/𝐶𝐶𝐶𝐶 and the depth of failure increases. However, a numerically focused depth of 
failure analysis indicated that a non-linear fit may be more suitable for predicting the depth of EDZs 
(Perras & Diederichs 2016) at higher stress levels than the empirical data. The numerical analysis 
utilized the damage initiation and spalling limit (DISL) approach developed by Diederichs (2007), 
to represent brittle spalling behavior and to define the limiting stress envelops (peak and residual) 
using the generalized Hoek-Brown formula. The non-linear curves in Figure 2 are traditional 
regression models of the numerical data that were plotted using the stats-model library and they 
aligned with the empirical EDZs data. As the goal is to enhance the accuracy of regression models, 
the gap rises between traditional regression approaches and the imperative to leverage the potential 
of ML algorithms. By employing advanced ML algorithms to effectively handle non-linearity and 
high dimensional data, the limitation of conventional regression methods can be overcome. 

3 MACHINE LEARNING 

Machine learning is a technique that computers learn from experience, by examining data and 
improving the algorithms’ performance for prediction (Liu 2021). The main task when using machine 
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learning is to develop learning algorithms that use data to build a model and then use the model to 
make prediction on the unseen data (Liu 2021). Machine learning models fall into four primary 
categories, supervised learning, unsupervised learning, semi-supervised learning, and reinforcement 
learning. The difference is about the data that is fed to the learning algorithm (Géron 2019). Two 
sub-categories of supervised learning are regression and classification. In classification the algorithm 
must learn how to classify data into separate groups, whereas in regression it has to learn how to 
predict a target numeric value (Géron 2019). 

 
Figure 2. Comparison of in-situ depth of EDZs with traditional regression curves of the original numerical 

data from Perras & Diederichs (2016) and the empirical depth of failure line from Diederichs (2007). 

3.1 Algorithms for Regression and Classification ML models 

Two different algorithms were used in this study; k-nearest neighbor (KNN) and multi-layer 
perceptron (MLP). KNN is one of the fundamental classification schemes that is also used for 
regression. In order to make a prediction for unseen data, the algorithm uses Euclidean distance, 
equation (1), to measure the distance to find the closest neighbors (Muller & Guido 2020). 

  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �(𝑋𝑋2 − 𝑋𝑋1)2 − (𝑌𝑌2 − 𝑌𝑌1)2   (1) 

Where (X1, Y1) and (X2, Y2) are the coordinates of two points. KNN is also used for regression in a 
sense that a target value of an unknown data can be predicted based on the KNN target values (Muller 
& Guido 2020). An MLP is comprised of an input layer, hidden layers, and an output layer. Each 
hidden layer has different connection weights that are initialized randomly. An MLP uses 
backpropagation to first make a prediction that measures the error and then goes back to the layer to 
compute the error contribution for each connection, subsequently adjusting the connection weights 
to minimize the error (Géron 2019). 

3.2 Application of ML to EDZ depth prediction 

Regression ML models help to predict the damage depth as a continuous quantity by using the 
maximum tangential stress around the opening, and the crack initiation (CI) threshold. Whereas the 
classification ML models determine which EDZ zone the damage depth belongs to. The code was 
written in Python 3.11.1 and the scikit-learn ML package was used. The data that fed into the ML 
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models are from the numerical study of Perras & Diederichs (2016). For the regression ML model, 
the model was trained using 80% of the data (i.e., the training set). The hyperparameters were tunned 
to give the best results then the calibrated model was tested on the remaining 20% of data (i.e., test 
set). The same procedure applied for the classification ML models, however, the stratified k-fold 
methods was used for hyper parameter tunning for the training set. 

4 RESULTS 

4.1 Regression Models 

For each EDZs (HDZ, EDZi, and EDZo), ML regression models were developed and compared with 
each other and the traditional regression model (the base model). Various evaluation metrics were 
utilized to assess the performance of the regression models, including R2, mean absolute error 
(MAE). The R2 value ranges from 0 to 1, where a value of 1 indicates that the ML algorithm 
accurately predicts the dependent variable using the independent variable(s). The general procedure 
for both ML models involved calibrating the algorithm using the training set and then inputting the 
independent variable, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/𝐶𝐶𝐶𝐶, to the model in order to predict the dependent variable, Damage 
Depth/Radius of tunnel. In Figure 3, the regression lines were plotted based on the predicted values 
of damage depth/radius of the tunnel. 

 
Figure 3. (a) Traditional regression, KNN and MLP ML regressions for EDZi, (b) R2 values for KNN and 

MLP regression models, (c) MAE for KNN and MLP regression models. 

(a) 

(b) (c)
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Figure 3-a illustrates an example of the regression ML models for EDZi. It shows the strong 
consistency between the MLP ML regression line and the traditional regression model. Notably, the 
MLP model demonstrates superior generalization when 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/𝐶𝐶𝐶𝐶 is less than 1.5. Comparing the R2 
and MAE values across different EDZs for both ML models (Figure 3-b and Figure 3-c), it becomes 
evident that the MLP outperforms the KNN model. MLP exhibits lower MAE for EDZi and EDZo, 
and comparable values for HDZ. Additionally, MLP achieves higher R2 values for EDZi. In 
conclusion, MLP proves to be more effective than KNN for regression tasks. 

4.2 Classification Models 

The performance of classification models was evaluated using several key metrics, including the 
confusion matrix, receiver operating characteristic (ROC) curve, and area under the ROC curve 
(AUC). The confusion matrix provides a summary of a classification model's performance. It is 
presented as a table, where the diagonal elements represent the number of correctly classified 
instances for each class. The ROC curve is a graphical representation of the performance of a binary 
classification model. A superior classifier will have a curve that is closer to the top-left corner of the 
plot, indicating higher accuracy of the model. By considering these metrics, researchers can make 
informed decisions about the efficacy of each model.  

 
Figure 4. The evaluation metrics for classification ML models; column (a) for KNN and column (b) for MLP. 

From top to bottom: Confusion Matrix, ROC Curves, Decision Boundaries. 

Figure 4 presents a comprehensive comparison of the KNN and MLP classifications metrics. In 
general, the ROC curve is conducted for binary classification, therefore each EDZ was binarized 
against the remaining EDZs. Thus, three ROC curves were plotted, for both ML models. Although a 
comparison of the evaluation metrics suggests similar or slightly better performance for the MLP 
model, it is when the decision boundaries are examined that the superiority of the MLP approach as 
a classifier becomes apparent. The MLP model exhibits a noise-free decision boundary that does not 
show overfitting, unlike the KNN. Additionally, the MLP performs better when 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/𝐶𝐶𝐶𝐶 is less than 

(a) (b) 
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1.5, effectively classifying the EDZs. So, it can also be concluded that the MLP model outperforms 
the KNN model in classification tasks. 

5 CONCLUSION  

Understanding the impact of creating an excavation on the surrounding rocks and the stability of 
underground structures is crucial. Fractures and damage resulting from excavation can significantly 
affect subsurface stability and permeability within the HDZ and EDZi. Therefore, accurate prediction 
of the depth of damage is critical for permeability sensitive underground structures. Empirical 
methods introduced by Martin et al. (1999) and Diederichs (2007) have successfully predicted the 
depth of brittle failure, however, Perras & Diederichs (2016) demonstrated the accuracy of nonlinear 
prediction curves to predict the depth of EDZs. This research follows a similar path by applying 
machine learning (ML) algorithms on the existing numerical data. Two ML regression algorithms, 
K-Nearest Neighbors (KNN) and Multi-Layer Perceptron (MLP) were employed to demonstrate that 
ML approaches can make similar, if not better, predictions than the traditional regression method. 
The regression ML models aimed to predict damage depth based on the maximum tangential stress 
around the opening and the crack initiation (CI) threshold. Subsequently, KNN and MLP were 
employed for classification purposes that aimed to determine different excavation damage zone 
(EDZ) regions using the same features. For regression, MLP outperformed KNN, showing 
consistency with the traditional regression model and an advantage when 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/𝐶𝐶𝐶𝐶 was less than 1.5. 
For classification, MLP exhibited superior performance by avoiding overfitting in decision 
boundaries compared to the KNN model. Thus, it can be concluded that the MLP outperforms the 
KNN approach in this study. This research serves as a preliminary study to validate the performance 
of ML models compared to traditional regression approach. With this goal achieved, the next stage 
would involve modeling more complex regression models using additional numerical inputs as ML 
features to predict the depth of EDZs and then perform input variable selection to figure out which 
input parameter has more influence on damage depth. 
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