
ABSTRACT: Stability analysis of rock slopes is an exercise that poses a variety of challenges to a 
rock engineer. Field information is often lacking and subjective modelling of the rock mass is 
required. Expert judgment also influences the quantification of the targeted safety level, reflecting 
the confidence of the designer in his own assumptions and hypothesis. With the introduction of the 
EN1997 in Europe, structural reliability concepts were brought to the design of geotechnical 
structures, now also including rock masses after its current revision. Yet, fully-probabilistic methods 
are still considered valid alternatives to the partial safety method recommended there. Understanding 
how to address rock engineering problems from a probabilistic perspective becomes essential to 
move beyond the traditional practice. In this study, a simple problem relating to the stability of a rock 
slope is explored. Limit states for foreseeable failure mechanisms are defined and the system 
reliability problem is formulated and solved. 

Keywords: Rock slope, wedge stability, probabilistic approach, system reliability, failure mode 
analysis. 

1 INTRODUCTION 

Fully-probabilistic methods are recognized in EN 1997 (2004) as valid alternatives to the application of 
the partial safety method. They are also considered as advanced approaches given the increasing 
complexity involved. However, they have known advantages in supporting design and achieving 
economical optimization under uncertain conditions. In fully-probabilistic methods, uncertainties are 
modelled by random variables and the structural safety is quantified by the probability of failure. The 
boundary between acceptable and non-acceptable structural performance is defined as a limit state G(x), 
given in terms of random variables x. Probability theory is then used to compute the probability of 
failure as, 

𝑝𝑝𝑓𝑓 = ∫ 𝑓𝑓𝑥𝑥(𝒙𝒙) 
𝐺𝐺(𝒙𝒙)<0 𝑑𝑑𝒙𝒙 ≅ 1

𝑚𝑚
∙ ∑ 𝐼𝐼(𝒙𝒙)𝑚𝑚

𝑗𝑗=1   (1) 
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where fx(x) represents the joint probability density distribution function of the random variables x. 
The right-hand side of the equation is an approximation of the probability of failure using the Monte 
Carlo method, which consists in performing m realizations of the limit state and determining how 
many failures actually occur using a failure indicator function I. For large enough values of m, the 
failure frequency provides an estimate of the probability of failure. 

In rock engineering, probabilistic approaches are still seldom performed. Instead, expert 
judgement usually governs all the design stages of a project, including geotechnical surveys, failure 
mode analysis and ground modelling (Muralha 1991). The high uncertainty often involved in many 
rock engineering problems and the complex and cumbersome models sometimes needed, contribute 
for that. However, with EN1997 now also covering rock engineering, applying probabilistic methods 
to simple problems that a rock engineer often faces is a first step to formulate and deal with more 
complex problems in the future. 

This work follows a study aiming at comparing the application of deterministic, semi-probabilistic 
and probabilistic methods to the sliding stability analysis of a rock slope (Pereira et al. 2021). In this 
paper, the probabilistic analysis of the stability of a rock slope accounting for the geometry uncertainty 
is addressed using an extension of the procedure followed in Jimenez-Rodriguez et al. (2006) to a tri-
dimensional wedge that may be split in several blocks by a third joint set. 

2 CASE STUDY AND FAILURE MODE ANALYSIS 

The case study used in this paper to test probabilistic approaches to the stability analysis of rock 
slopes comes from a real project in which large cuttings in jointed gneiss were carried out as part of 
the construction of a bypass in the French Pyrenees (Gasc-Barbier et al. 2008). This specific cutting 
is 270 m long and 48 m high, and is nearly vertical, striking N20°E. 

Statistical analysis of joint data, obtained from outcrops measurements and scanlines, allowed the 
distinction of three joint sets (F1, F2 and F3), and the estimation of the respective average orientations 
(dip and dip direction), the dispersion parameters k (Fisher distribution) and the spacing parameters 
λ (negative exponential distribution). Graphical analysis of the lower hemisphere projection of joint 
planes (Figure 1a) reveals a predominant failure mechanism characterized by the formation of rock 
wedges from the intersection of joint sets F1 and F2. Joint set F3, sub-vertical and sub-parallel to the 
slope face, might cut the rock slope at multiple distances from the slope face, also enabling the 
occurrence of toppling mechanisms. A randomly generated model of the fracture network is shown 
in Figure 1b, where an example of a rock wedge is highlighted. Without loss of generality, this study 
focuses on the stability of the rock wedges defined by joints from sets F1 and F2, and considering 
the possibility of other joints from joint set F3 intersecting them.  

 
a) Lower hemisphere projection 

 
b) Realization of a discrete fracture network 

Figure 1. Geometric data of the rock slope. 

Wedge stability, either a part of it or the whole wedge, is quantified through a factor of safety 
commonly given by the quotient between resistance and loads (or, more generically, between 
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stabilizing and destabilizing effects of actions). A closed-form solution for the factor of safety can 
be obtained from block theory and vector analysis detailed in Goodman & Shi (1985), which 
encompasses the possibility of sliding along one or both joints, depending on the relative orientation 
of the joints and the direction of the total force. The corresponding limit state for a specific stability 
problem j (Gj) is simply set as, 

 𝐺𝐺𝑗𝑗(𝒙𝒙) = 𝐹𝐹𝐹𝐹(𝒙𝒙) − 1 (2) 

where x is the vector of random variables involved in the problem. FS=1 (or G=0) then sets the 
boundary between stable (FS>1 or G>0) and unstable conditions (FS<1 or G<0). 

3 SYSTEM RELIABILITY FORMULATION 

Since the wedge instability is the only failure mechanism being considered, a geotechnical design model, 
i.e. a conceptual representation of the media for the verification of the limit state, can be simply given by 
an isolated wedge limited by any two joints from sets F1 and F2 (Figure 2a). Other joints from joint set 
F3 intersecting the wedge, that may, in theory, behave as tension cracks since no tensile strength is 
considered for these joints, can also be accounted for, making the wedge an assembly or a system of 
blocks. Conservatively, all joints are modelled as planar and persistent. 

The state of the system can then be inferred from the state (stable or unstable) of each block. 
However, since an inner block cannot be unstable without the instability of all the outer blocks, this 
problem, that would originally require testing the stability of each block individually, can be 
simplified. In turn, the system is considered to fail if any set of blocks, from the slope face to any 
joint from set F3, is unstable. Therefore, a rock wedge intersected by N other joints (Figure 2b) can 
be idealized as a series system with N+1 alternative failure modes (i =1, …, N+1), corresponding to 
the instability of any key set of blocks X (from block B1 up to block Bi) and the stability of the 
remaining set of blocks Y (from block Bi+1 to the block BN+1), i.e., 

𝑝𝑝𝑓𝑓,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃 ��  �𝐺𝐺𝑋𝑋(𝑖𝑖) < 0 ∩  𝐺𝐺𝑌𝑌(𝑖𝑖) > 0�𝑁𝑁+1
𝑖𝑖=1

�  (3) 

where the X(i) is the key set of blocks (B1,…, Bi), and Y(i) is the set of the remaining blocks (Bi+1,…, 
BN+1). The failure mode with i=N+1 corresponds to the instability of the whole wedge. 

 
a) Wedge highlighted in Figure 1b 

 
b) Two-dimensional equivalent representation 

Figure 2. Idealization of the rock wedge as a system of blocks. 

4 RANDOM VARIABLES 

The relevant sources of uncertainty involved in reliability problems are considered in the analysis as 
random variables modelled by probability distributions. Their definition is sometimes subjective, 
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especially in the absence of objective data. At the end, mathematical features of probability 
distributions should at least comply with the theoretical constraints of those variables. 

The following random variables, other than the geometric proprieties already mentioned in Gasc-
Barbier et al. (2008), are included in this study, namely: the rock density, the groundwater level, the 
joint water pressure, and the joint shear strength. Their statistical properties are synthesized in 
Table 1. Special references to some of them must, however, be made: 

- Being the only variable load considered, the groundwater level determines the reference 
period related to the probability of failure. A normal distribution with mean value 40 m above the 
slope toe and a standard deviation of 3 m, corresponding to the point-in-time (quasi-permanent) 
groundwater level, is assumed. As a consequence, calculated probabilities of failure correspond 
to an estimate of its instantaneous value. 
- The joint water pressure depends on the groundwater level and varies along the joints. Two 
hypothetical extreme conditions are conservatively assumed: the joint pressure distribution is 
idealized as a bi-linear diagram where the peak value is located at mid-height (kw=0) and near the 
slope face (kw≈1). Without further information, any situation in-between is considered equiprobable, 
i.e. the joint water pressure factor kw is considered a random variable following a uniform 
distribution ranging from 0 to 1. Figure 3a illustrates the water load effects on the joints. 
- The joint shear strength is presumed to be given by the Mohr-Coulomb envelope (τ̄ ) with 
cohesion c̅=40kPa and friction angle φ̅=35°, after test data analysis. The associated uncertainty can 
be taken into using a random variable θ, which multiplies the adjusted envelope (τ=τ̄ .θ). A 
lognormal distribution with unit mean value and a coefficient of variation of 20%, which appears to 
be a realistic value (Muralha 1995), is assumed for the random variable θ considered for each joint. 
- The location of the i-th joint from set F3 is also uncertain. However, from the field survey, 
it is known that the spacing between consecutive joints is 3 m on average, and shall be modelled 
by a negative exponential distribution. Therefore, the location of i-th joint, counted from the slope 
face inwards, is given by the sum of i negative exponentially distributed random variables with 
parameter λ=3 m. 

Table 1. Probability distribution of random variables included in the reliability problem. 

Random 
variable 

Description Probability 
distribution 

Parameters 
 p1 p2 

ρr (kg/m3) Rock density Normala 2600 50 
Hw (m) Groundwater level above slope toe Normala 40 3 
kw Joint water pressure factor Uniformb 0 1 
θ1 Shear strength model uncertainty (set F1) Lognormalc 1 0.2 
θ2 Shear strength model uncertainty (set F2) Lognormalc 1 0.2 
ΔL (m) Spacing between joints (set F3)  Exponentiald 3 - 
jdip1 /jdd1 (°/°)  Joint 1 orientation (dip/dip direction) Fishere 83/249 86 
jdip2 /jdd2 (°/°)  Joint 2 orientation (dip/dip direction) Fishere 44/173 105 
jdip3 /jdd3 (°/°)  Joint 3 orientation (dip/dip direction) Fishere 89/111 196.5 

a p1=μ, p2=σ. b p1=a, p2=b. c p1=μ, p2=σ. d p1=λ. e p1=μ, p2=k. 

5 RELIABILITY ANALYSIS AND RESULTS 

System reliability problems can be addressed following a component-based approach in which the 
probability of occurrence of each failure mode (parallel sub-system) is computed separately using 
first-order approximations or simulation methods. The system probability of failure can later be 
bounded considering that different failure modes may display some degree of correlation, ranging 
from fully independent to fully dependent. Alternatively, the overall system probability of failure can 
be computed directly using simulation methods. The latter is attempted in this study, although the 
computational cost may be higher. 

The approximation of the system probability of failure via simulation techniques consists, in its 
simplest form, in using the Monte Carlo method (Eq. 1) with the indicator function I(x) now counting 
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the occurrence of any failure mode of the system. This procedure can become cumbersome, since for 
each realization of the random variables, all failure modes must be tested (or at least, until the system 
fails for the first time). This option is only practical in this case because the failure mode verification 
relies on solving limit states with explicit, analytical formulas. For a wedge with height H, the 
following algorithm is used:  

Step 1. Generate values of the random variables involved in the definition of the rock wedge (ρR, 
Hw, kw, θ1, θ2, jdip1 /jdd1 and jdip2 /jdd2). 

Step 2. Compute the length of the rock wedge (L) from H, jdip1 /jdd1 and jdip2 /jdd2. 
Step 3. Generate N joints from set F3, with orientation jdip3 /jdd3 and the distance to the previous 

one, ΔL3. Note that only the joints intersecting the wedge are relevant, i.e. ∑ ∆𝐿𝐿3,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 < 𝐿𝐿. 

Step 4. Check the occurrence of failure for each N+1 failure modes (see section 3).  
Step 5. Update the estimation of the system probability of failure and its coefficient of variation. 
Step 6. Repeat the previous steps until a small coefficient of variation (set here to 2%) is achieved. 

This procedure was first performed for H=48 m and then repeated considering gradually smaller 
rock wedges, since it is expected that several wedges with variable dimensions exist throughout the 
rock slope. Figure 3b shows the system probability of failure versus the rock wedge height. The 
outcome of the failure mode corresponding to the whole wedge being unstable was isolated from the 
remaining failure modes for comparison purposes. 

 

 
a) Water load effects on joints 

 
b) Output from reliability analysis 

Figure 3. Representation of the water load effects on joints and output from reliability analysis. 

Given, on one hand, the unfavourable geometry of the wedge and, on the other hand, the statistical 
properties considered for the other random variables, especially the shear strength and the 
groundwater level, the system probability of failure of higher wedges is close to 1.0. This means that 
it is almost certain that failure of large volumes will occur if no reinforcement measures are 
implemented. The extent of those measures would yet be dependent on the maximum allowed 
probability of failure. 

It is also clear the contribution of the failure modes involving a joint from set F3 splitting the 
wedge in two and causing the instability of the key set of blocks. The difference for the case only 
considering the failure mode corresponding to the instability of the whole wedge proves how much 
important was, in this case, to contemplate the existence of the third joint set that may intersect the 
wedge in various locations. This difference becomes even more evident for smaller wedges. In that 
case, the probability of the whole wedge being unstable is lower but, owing to the existence of other 
joints from joint set 3, where groundwater pressure may be present with important effects regarding 
the wedge stability, the system probability of failure is still significant.  
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6 CONCLUSION 

As an alternative to the partial safety method proposed in EN1997 (2004), fully-probabilistic 
approaches, involving reliability analyses, were followed in this case study. The difficulty of 
performing reliability analyses usually lies on the formulation of the problem, modelling both failure 
and uncertainty. To avoid using complex numerical models with high computation efforts, 
simplifications of the failure mechanisms are required.  

Although other failure mechanisms are possible, the stability of a simple rock wedge was tested. 
Complexity is added to this rather simple stability problem as the presence of joints from a third joint 
set, that may intersect the rock wedge, is introduced. In this case, rock wedges possibly created by 
joints from sets F1 and F2, and intersected by other joints from set F3, form a system of blocks. 
Together with the instability of the whole wedge, one shall also consider the failure of any set of 
blocks from the slope face to any of these joints. For N of these joints intersecting the wedge, it was 
showed that N+1 failure modes actually exist. The system reliability analysis shall then take into 
account that each of these failure modes represents the wedge failure and must be checked. An 
algorithm to estimate the system probability of failure was developed. 

The system probability of failure estimated for wedges of variable height was compared to the 
probability of failure of the whole wedge, taken as the reference study to be made. The significance 
of addressing the problem as presented became clear. In fact, the contribution of the failure modes 
involving a joint from set F3, splitting the wedge in two and triggering a failure mechanism 
characterized by the instability of the key set of blocks, is relevant. Even for smaller rock wedges, 
whose probability of failure of the whole wedge is very low, the existence of other joints serving as 
tensions cracks, where groundwater pressure may be present with important effects regarding the 
wedge stability, makes the system probability of failure still significant. 
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