
ABSTRACT: In the analysis of underground disposals over multiple thousands of years the 
assumption of small strains can be violated. In this contribution an extension of the BGRc creep 
model to the finite deformation regime is outlined. 
With small scale examples the finite deformation treatment of the underlying boundary value 
problem is studied towards its influence on safety assessments for geological nuclear waste 
repositories. 
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1 INTRODUCTION 

In order to find a safe and reliable geological disposal site for high-level radioactive waste, rock salt 
formations are important candidates as corresponding host rock. The mechanical advantages such as 
high ductility, its tightness and the large undisturbed volumes as well as its capacity to heal out 
fractures compete with its disadvantages such as water solubility. For the dimensioning, the safety 
assessment of the operational phase and its long term safety, the thermo-hydro-mechanical state of 
the disposal site and the surrounding rock must be predicted up to many thousands of years. 
Therefore, it is crucial to have reliable material models on the one hand and accurate and efficient 
numerical frameworks to solve the mathematical model on the other hand. The mechanical behaviour 
of salt has been investigated intensively in the last decades and different monographs and collections 
are dedicated to it. Without trying to give a comprehensive list the reader is referenced e.g. Cristescu 
& Hunsche (1998) or Hampel et. al. (2016).  

With the excavation of disposal sites the stress state of the host rock is disturbed. Due to creep, 
this stress fluctuation decrease over the time, leading to deformations in the host rock. The excavated 
cavities will converge over a long time scale. By taking such long time scales into account the 
predicted deformations cannot be postulated as small. Therefore, in this contribution an attempt is 
made to outline the extension of a present creep law into a finite deformation context. Furthermore, 
the small-scale version and the large deformation one are compared by evaluation of a numerical 
laboratory-scale test and a generic deposition site. 
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2 CONSTITUTIVE MODEL FOR ROCK SALT: BGRC AT SMALL STRAINS 

2.1 Creep deformation in rock salt 

In this section only a rather rough overview over the small strain constitutive model for rock salt is 
given. The deformation of rock salt is mainly characterized by a visco-plastic behaviour. This 
phenomenon is known as creep and can be subdivided into three phases according to the different 
behaviour of a specimen observed in creep tests. These phases are denoted primary or transient creep, 
secondary or stationary creep and tertiary creep. In the following section the simple BGRc model is 
described. Here, only the transient and stationary creep phase without healing and damage is 
addressed. The model is capable to address dilatancy effects and solution-precipitation creep in a 
simplified manner. 

The BGRc creep model is embedded in a standard visco-plastic setting with additive split of the 
small strain tensor 𝛜𝛜: 

 𝛆𝛆 = 𝛻𝛻sym𝐮𝐮 = 𝛆𝛆p + 𝛆𝛆e (1) 

into an elastic part 𝛆𝛆e and a plastic part 𝛆𝛆p. The stress 𝛔𝛔 is defined as the partial derivative of a free 
HELMHOLTZ-energy-density function 𝜓𝜓 with respect to the elastic strains: 

 𝛔𝛔 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝛆𝛆e . (2) 

the plastic flow rule of the BGRc model is defined as: 

 𝛆̇𝛆p : = 𝛾̇𝛾dev
𝛔𝛔dev

||𝛔𝛔dev||
+ 𝛾̇𝛾vol𝟏𝟏 , (3) 

with 𝛾̇𝛾dev and 𝛾̇𝛾vol as the scalar creep rates. The deviatoric creep rate 𝛾̇𝛾dev is defined by: 

 𝛾̇𝛾dev : = 𝐴𝐴1 exp �
𝑄𝑄1

𝑅𝑅 ⋅ 𝑇𝑇
� �
𝜎𝜎eqv

𝜎𝜎∗
�
𝑛𝑛1
 +  𝐴𝐴2 exp �

𝑄𝑄2

𝑅𝑅 ⋅ 𝑇𝑇
� �
𝜎𝜎eqv

𝜎𝜎∗
�
𝑛𝑛2
 . (4) 

Here, 𝜎𝜎eqv is the equivalent stress measure and 𝑇𝑇 is the absolute temperature. All material parameters 
are summarized for convenience in table 1. The evolution law for the deviatoric creep rate 𝛾̇𝛾dev is 
decomposed in two NORTON-HOFF creep terms. The first term is used to model the stationary creep 
whereas the second term is used to model the pressure precipitation creep by setting 𝑛𝑛2 ≈ 1. The 
equivalent stress 𝜎𝜎eqv in equation (4) is defined as: 

 𝜎𝜎eqv = 𝜎𝜎vM − 𝜎𝜎H  (5) 

and reduces to the von MISES stress 𝜎𝜎vM in the absence of the hardening stress 𝜎𝜎H. If dislocations 
pile up, the hardening stress increases and the creep rate decreases. Transient creep can be interpreted 
as the competing mechanism of dislocation storage and recovery. In Kocks (1976) an evolution 
equation of the dislocation density is derived. Based on this a micromechanical motivated isotropic 
hardening model is used within the BGRc model. The evolution equation for the hardening stress 𝜎𝜎H 
then reads: 

 𝜎𝜎Ḣ = 𝜅𝜅H �
𝜎𝜎eqv

𝜎𝜎H
−

(1 − 𝑧𝑧)2

𝑧𝑧2
𝜎𝜎H

𝜎𝜎eqv
� 𝛾̇𝛾dev . (6) 

In order to obtain the same stationary creep rate as for the non-hardening case, the normalizing stress 
𝜎𝜎∗ in (4) is defined to be: 
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 𝜎𝜎∗ = (1 − 𝑧𝑧)𝜎𝜎0 . (7) 

Here, 𝜎𝜎0 ensures a unit independent formulation of the creep rate. The volumetric part 𝛾̇𝛾vol of the 
creep rate reflects the volume increase due to micro cracking. The dilatant behaviour is only active 
if the stress state is above the dilatancy boundary 𝜎𝜎dil according to Hunsche & Hampel (1999). The 
evolution of the volumetric creep is defined to be proportional to the deviatoric creep rate: 

 𝛾̇𝛾vol =
𝑟𝑟v
3
𝛾̇𝛾dev with  𝑟𝑟v : = �min �𝑎𝑎 �

𝜎𝜎eqv − 𝜎𝜎dil

𝑆𝑆
�
𝑚𝑚

, 𝑟𝑟vmax� :𝜎𝜎vM > 𝜎𝜎dil

0 :𝜎𝜎vM ≤ 𝜎𝜎dil

 . (8) 

The proportionality factor 𝑟𝑟v increases with the distance to the dilatancy boundary 𝜎𝜎dil up to its 
maximal value of 𝑟𝑟vmax. For thermodynamic consistency this factor is limited by the current stress 
state: 

 𝑟𝑟vmax : = −
3||𝜎𝜎dev||

tr (𝜎𝜎)
 . (9) 

The dilatancy boundary 𝜎𝜎dil : = 𝜎𝜎�dil(𝛔𝛔) is a function of the stress state. In the present model this 
dependency reads: 

 𝜎𝜎�dil(𝛔𝛔) = b𝑆𝑆c  with 𝑆𝑆 : = max �−
tr [𝛔𝛔]

3
,𝜎𝜎lim� . (10) 

Table 1. Material parameters and units of BGRC model. 

Material parameter Value Unit Material parameter Value Unit 
Young`s Modulus 𝐸𝐸 25000 MPa Poisson`s ratio 0.27 - 
Activation energy 𝑄𝑄1 54 kJ/mol Activation energy 𝑄𝑄2 54 kJ/mol 
Parameter 𝐴𝐴1 0.357 1/d Parameter 𝐴𝐴2 1.2 1/d 
Normalizing stress 𝜎𝜎1

* 1 MPa Normalizing stress 𝜎𝜎2
* 1 MPa 

Stress exponent n1 5 - Stress exponent n2 1.25 - 
Gas constant 𝑅𝑅 0.0083 kJ/(mol K) Max. dilatant stress 𝜎𝜎lim -0.1 MPa 

𝑎𝑎 0.816 - 𝑚𝑚 2 - 
𝑏𝑏 1.5 - 𝑐𝑐 1.0 - 

Hardening limit 𝑧𝑧 0 - Hardening modulus 𝜅𝜅𝐻𝐻 0 - 

2.2 Finite deformation framework for BGRc creep 

In most finite element analysis software the small strain elasto-plasticity models are implemented in 
an efficient way. Therefore, Cuitino & Ortiz (1992), Simo & Meschke (1993) and later Miehe et al. 
(2002) developed a numerical framework to reuse the small strain algorithm and preserving the 
quadratic convergence of the non-linear equation solver. 

The key lies in the usage of the logarithmic strain space. With this a formally identical structure 
of the kinematical quantities is obtained which allows the usage of the small strain constitutive 
models with only minor modifications. The necessary steps for the stress update were summarized 
by Miehe et al. (2002): 

1. Geometric pre-processing: The logarithmic strains {𝐄𝐄,  𝐄𝐄e} are computed from the right 
CAUCHY-GREEN tensor 𝐂𝐂 and the plastic logarithmic strains 𝐄𝐄p. 

2. Stress update: The small strain stress update algorithm is applied by interchanging the 
input arguments �𝛆𝛆,  𝛆𝛆n,  𝛆𝛆n

p�  →   {𝐄𝐄,  𝐄𝐄e,  𝐄𝐄p}. 
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3. Geometric post-processing: Transform the resulting stress and material tangent operator 
to the finite deformation regime. 

The implementation task for the additive plasticity model described in this section is therefore 
restricted to the implementation of robust and fast matrix logarithm and matrix exponential functions 
with the corresponding derivatives needed to compute the transformation of the stress and material 
tangent tensor. The presented theory was implemented into the in house FEM analysis program JIFE. 

3 NUMERICAL EXAMPLES 

In this section 2 numerical examples are presented. First, a multi stage triaxial test is elaborated and 
the differences of the small strain formulation and the large strain formulation are highlighted. The 
second test mimics the convergence of underground cavities. Finally the fluid pressure criterion and 
the dilatancy criterion are evaluated in this generic deposition site. 

3.1 Deformation rate controlled laboratory test 

The triaxial specimen shown in figure 1 on the left hand side is compressed with a constant strain 
rate 𝜖𝜖̇ = 10−5 s−1 and a lateral pressure 𝜎𝜎3 = 2 MPa. At an engineering strain of 20% the specimen 
is not further compressed and a stress relaxation phase takes place. The material parameters are 
summarized in table 1. The numerical test is carried out without hardening. In figure 1 on the right 
hand side the resulting stresses are plotted against the engineering strains for small deformations 
(SD) and for finite deformations (FDA). While the stress in the small deformation regime is constant 
over the entire loading phase, the finite deformation stress measure (first PIOLA-KIRCHOFF Stress) 
increases due to the enlargement of the corresponding area. For comparing purposes a third curve 
was added to figure 1. This curve was taken from figure 6 in Schulze et al. (2017). Commonly the 
behaviour of increasing stress in such kind of experiments are identified as hardening. But here, we 
can clearly see, that a significant amount of the increasing stress is related to the finite deformation 
treatment. For the relaxation branch of the test, the both formulations show nearly the same results. 

3.2 Generic high-level radioactive waste repository 

In this example a generic disposal site is modelled in two dimensions to analyse the effect of the 
finite deformation framework within a regime characterized by highly inhomogeneous stress states. 
In figure 2 the domain and its geometry are depicted. There are 4 excavations shown in the figure. 
Excavation 𝐸𝐸1 is a gallery with a typical cross section area of about 21 m2, while excavation 𝐸𝐸2 and 
𝐸𝐸4 are disposal sites. 𝐸𝐸2 is still fully open and 𝐸𝐸4 is partially backfilled with an elastic material. 
Excavation 𝐸𝐸3 has an unconventional geometry where the height of the gallery is larger than its 
width. The entire site is bedded in 4 layers of salt rock with the material parameters listed in table 2. 
The initial boundary value problem has symmetry boundary conditions on the left and the right hand 
side and the weight of the 400 m mighty and homogeneous overburden is distributed as load 𝐓𝐓�. The 

Figure 1. Boundary value problem for strain rate controlled test (left). Axial stress over strain (right). 
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deformation process is simulated for 10000 years and the results of the different formulations are 
compared.  

 

Table 1. Material parameters for generic geological disposal 
example. 

 Name 𝐸𝐸 in 
MPa 𝜈𝜈 

𝐴𝐴1 
in  
𝑎𝑎−1 

𝐴𝐴2 
in  
𝑎𝑎−1 

𝑛𝑛1 𝑛𝑛2 

𝑆𝑆1 Salt 1 25e4 0.27 4.1 454 5 1.25 
𝑆𝑆2 Salt 2 25e4 0.27 65.7 7267 5 1.25 
𝑆𝑆3 Salt 3 25e4 0.27 16.4 1817 5 1.25 
𝑆𝑆4 Salt 4 25e4 0.27 4.1 454 5 1.25 
𝐸𝐸1 Excavation 1 0.1 0 - - - - 
𝐸𝐸2 Excavation 2 0.1 0 - - - - 
𝐸𝐸3 Excavation 3 0.1 0 - - - - 
𝐸𝐸4 Excavation 4 0.1 0 - - - - 
𝐵𝐵1 Backfill 15e4 0.27 - - - - 

 
 

For solution times ≤ 500 years the small strain setting and the finite deformation frameworks yield 
nearly the same displacement. In figure 3 on the left hand side the vertical displacement of point PB 
is plotted over the simulation time. Here, the large strain formulation (FDA) shows a significant less 
downshift compared to small strain formulation (SD). 

The behaviour of minor deformation can be observed in the entire model, e.g. the horizontal 
displacement of Point PC and PD or the convergence of excavation 𝐸𝐸1. In figure 3 on the right hand 
side the von MISES stress is drawn over the line between point PA and PB at time 𝑡𝑡 = 5000 a. 
Although the stress in the finite deformation simulation is generally lower, its value is higher in the 
vicinity of the excavation surfaces.  

 
Figure 3. Vertical displacement of point PB over time (left).  

Von Mises stress along line PA-PB at t = 5000 a (right). 

In safety assessments a commonly used criterion for the integrity of the geological barrier is the fluid 
pressure criterion (Fahland et al., 2015). It states that the mean stress in the salt should be lower than 
the hydro-static pressure of a hypothetical water column. In figure 4 on the left hand side the zones 
where the criterion is not fulfilled are marked with yellow for the small strain simulation and with 
red for the finite deformation simulation. In the present framework these zones are nearly 
indistinguishable. The same holds true for the second commonly used criterion: the dilatancy 
criterion. In figure 4 on the right hand side the deformed configuration of the generic deposition site 
is shown at time 𝑡𝑡 = 5000 a. At this time the deviatoric creep rates are already small in the finite 
deformation framework, which yields a slow convergence of the excavations. The red contour lines 
show the deformation state of the small strain simulation. Here, the convergence proceeds faster and 
self penetration of the finite elements must be actively prevented. 

Figure 2. Boundary value problem for 
generic geological disposal in salt rock. 
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4 SUMMARY 

In this contribution the constitutive setup for the current BGRc model based on the small deformation 
framework was outlined and a straight forward extension to the finite deformation framework was 
sketched. It was shown that even in laboratory experiments the usage of the finite deformation 
framework leads to more insight into the material behaviour. In the exemplary study of a generic 
repository it was shown that the solution between the two frameworks are comparable for the first 
500 years. Later, the deformations are overestimated by the small strain setup. This is especially 
important if the sealing properties of an underground construction are studied. For the fluid pressure 
criterion and the dilatancy criterion no significant discrepancy could be identified in this example. 
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