
ABSTRACT: As underground mines go deeper, it is of utmost importance to manage increased 
stresses to minimise occurrences of rockbursts. Rockbursts have several documented devastating 
economic, social and safety consequences such as fatalities, loss of mine assets or production 
sections, social uproar, force majeure etc. Among several approaches which can be adopted to 
manage rockbursts is the practice of destress blasting. It is necessary to evaluate the efficiency of any 
adopted destress blasting design. This can be done through the measurement of physical parameters 
such as changes in deformation, local seismic magnitude, stress; fracturing intensity etc. at different 
locations where destress blasting has been implemented. This entails physical exposure of workers 
to mining excavations, increasing their exposure to harm when safety fails. This paper presents a 
conceptual study on geostatistical approaches which can be utilized to estimate unmeasured locations 
using measured locations, thereby reducing the mining personnel's exposure to harm. 

Keywords: Deep mining, Rockburst, Destress blasting, Geostatistics, Semi-variogram modelling, 
Cross-validation. 

1 INTRODUCTION 

Deep hard rock mining faces the challenges of rockbursts due to increasing stresses and deformations 
at depths. When the accumulated stress is not properly managed, the resultant rockbursts can lead to 
severe consequences such as fatalities, loss of expensive equipment, loss of mine production sections, 
social uproar, and force majeure among many other consequences.  

Among the alternatives to manage the high stresses and deformations is the practice of destress 
blasting. Destress blasting aims to move peak stress from the immediate vicinity of the mining drift 
further into the rock mass (Roux et al. 1958).  

To come up with a suitable destress blast design, accurate information on the rock mass properties, 
excavation geometry, stress regime, blast hole dimensions and explosives characteristics is needed.  
To assess the efficiency of destress blasting, different approaches can be used, these include, 
numerical simulation, fracture frequency monitoring ahead of the mining face (using a borehole 
camera, ground penetrating radar or physical assessment of the mining face drill core) before and 
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after destress blasting, deformation monitoring using laser scanning among many other approaches. 
Figure 1 illustrates fracture frequency measurement using borehole periscope (a) and physical 
assessment of drill core (b). c represents a scale which can be used to assess rockburst potential based 
on fracture frequency measurement.  
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. a Rock fracturing observation for a mining pillar (pillar face to pillar core (centre)) using a borehole 
camera (Sengani, 2020). b Rock fracturing ahead of a mining face as observed from mine drill core after 

destress blasting (Sengani & Zvarivadza, 2018). c Fracture frequency interpretation in relation to rockburst 
potential (Sengani & Zvarivadza, 2017). 

Given a set of geological and geotechnical conditions of the mine, geostatistical approaches can be 
used to predict the performance of destress blasting at different sections of the mine, mined or not 
mined. This study makes use of the geostatistical approaches of Semi-variogram modelling and 
Kriging to predict the efficiency of destress blasting for deep-level mining. The confidence in the 
results is given with a level of confidence of 95%. The concept of Semi-variogram modelling is 
credited for its ability to capture geological variability in the rockmass, with the determined standard 
deviation enabling rock engineers to assess the risk associated with a chosen destress blast design. 

2 GEOSTATISTICAL APPROACHES TO PREDICT DESTRESS BLASTING 
EFFICIENCY 

Several physical mining parameters can be separately evaluated using geostatistical approaches to 
estimate the value of that parameter at an unmeasured particular location of the mine, using historical 
observations. Some of the parameters which can be geostatistically analysed to evaluate destress 
blasting efficiency include deformation changes, local seismic magnitude changes, stress changes, 
and fracturing intensity among others. Collection of these parameters in an underground mine entails 
visiting the mining locations and performing physical measurements (laser scanning for deformation 
monitoring, installation of seismic monitoring devices, stress measurement devices, ground 
penetrating radar scanning or borehole camera measurement for fracture intensity monitoring. 

It can be seen that evaluation of the destress blasting efficiency entails physical encounters with 
the mining operations and can be costly. The need to make the aforementioned measurements 
increases the number of encounters and amount of time workers are exposed to the underground 
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mining faces, increasing the risk of mining personnel harm in the event of unanticipated safety 
failures. While there are several physical parameters which can be evaluated to analyse destress 
blasting efficiency, this paper focuses on the use of fracture frequency analysis approach, as 
postulated by Sengani and Zvarivadza (2017), to evaluate destress blasting efficiency from a 
geostatistical perspective. The use of fracture frequency analysis to evaluate destress blasting 
efficiency is credited for being practical and tethered in reality, that is, the observed results are based 
on what is actually happening in the rockmass, unlike other approaches such as numerical modelling 
which need several assumptions to be considered since the model cannot capture all the factors which 
influence rockmass behaviour. This practical, empirical approach inherently accounts for the most 
likely rockmass behaviour at a particular location based on historical observations. Despite the 
mentioned concerns of workers’ safety, some locations to be measures for destress blasting efficiency 
evaluation are simply not available due to several operational reasons such as scheduled blasting, 
scheduled charging, charged end, closed due to rock falls, entrance not passable due to other obstacles 
such as water, unavailability of transport to visit the mining end among many others. 

2.1 Semi-variogram analysis 

Semi-variogram analysis makes use of measured or known data of a particular parameter to estimate 
the value of that particular parameter at an unmeasured location. This approach has been used in 
many different fields of research, be it agriculture, pollution analysis, mining resources estimation, 
water quality distribution, fisheries, and forestry management among others. The spatial correlation 
of the parameter at the unmeasured location with other measured locations enables the estimation of 
the parameter as the unmeasured location with a great degree of confidence. This saves time, and 
resources and puts a buffer between workers and harm in the case of deep underground mining. 

2.1.1 Experimental Semi-variogram 

Data on the physical mining parameter to be analysed can be gathered based on the actual 
measurements which have been done on the mine and updated continuously. These actual 
measurement data can be represented in an Experimental Semi-variogram (See Figure 2), giving the 
semi-variance between pairs of samples at certain distances. Each point in the Experimental Semi-
variogram represents several pairs of samples with the same distance between them. Equation 1 is 
the formula for determining the Experimental Semi-variogram (γh*) 

𝛾𝛾ℎ∗ =
1

2𝑁𝑁ℎ
��𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑗𝑗�

2 (1) 

Where Nh is the number of samples at distance h. fi and fj represent the fracture frequency at locations 
i and j respectively. 

2.1.2 Model Semi-variogram 

Once the data on the Experimental Semi-variogram is available, it can then be used to estimate the 
value of the assessed parameter at the unmeasured location. The most challenging part of geostatistics 
is to fit the most appropriate geostatistical model to the experimental data in order to have more 
accurate estimations. Fitting of the most appropriate model to the experimental data entails several 
iterations where the model parameters (Total sill (CT), Nugget effect (C0) and Range (a) are 
continuously adjusted until the best possible model fit is attained. Fitting a geostatistical model to 
the experimental data is more of an art than a science, yet the fitted model and its parameters directly 
affect the determination of confidence intervals of our estimates. In this study, three Model Semi-
variograms were fitted on the Experimental Semi-variogram, with the model parameters of each 
Model Semi-variogram being adjusted several times to achieve the most reasonable best fit. The 
Model Semi-variograms are presented in Table 1. Figure 2 shows the Experimental Semi-variogram 
with the fitted Model Semi-variograms. 
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Table 1. Model Semi-variograms fitted to the Experimental Semi-variogram. 

Spherical Model                
Semi-variogram 

Exponential Model                
Semi-variogram 

Gaussian Model                      
Semi-variogram 

γ(0) = 0 

γ(h) = 𝐶𝐶0 + 𝐶𝐶1 �
3ℎ
2𝑎𝑎

−
1ℎ3

2𝑎𝑎3
�  

for 0 < h < a 

γ(0) = 𝐶𝐶0 + 𝐶𝐶1 for h > a 

γ(0) = 0 

γ(h) = 𝐶𝐶0 + 𝐶𝐶1 �1 − exp �−
ℎ
𝑎𝑎
��  

for h > 0 

γ(0) = 0 

γ(h) = 𝐶𝐶0 + 𝐶𝐶1 �1 − exp �−
ℎ2

𝑎𝑎2
��  

for h > 0 

C0: 1.6 C0: 1.4 C0: 1.8 
CT: 3.6 CT: 4.5 CT: 5 
C1: 2 C1: 3.1 C1 3.2 
a: 141 a: 115 a: 150 

 
Note: C0 is the nugget effect, random variation within the sampled data; CT is the total sill, maximum 
variance within the sampled data; C1 is the Spherical component, that is CT - C0; a is the range, that 
is the distance between samples beyond which the samples are no longer related. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Experimental Semi-variogram with fitted Model Semi-variograms. 

2.1.3 Model Semi-variogram choice and Cross-validation 

From the Experimental Semi-variogram (Figure 2), it can be noted that the maximum possible Sill 
of the experimental data is 4.29. Attempting to fit a Model Semi-variogram using this sill will leave 
out several experimental data, resulting in an erroneous model. From the artful fitting of the Model 
Semi-variogram, it can be seen that adopting a sill of 3.6 will result in a Spherical model Semi-
variogram which suitably fits the Experimental Semi-variogram. As can be noted from Figure 2, the 
Gaussian Model Semi-variogram does not fit the experimental data well, despite adjusting the sill to 
5, a value above the maximum sill noted in the Experimental Semi-variogram. The Exponential 
model Semi-variogram appears to fit the experimental data but it is based on a sill fit of 4.5, which 
excludes most of the Experimental data.  

A Cross-validation exercise can be done on the different models, utilizing different model 
parameter values to ascertain if a chosen model and its parameter values would give accurate results 
when estimating the value of an unmeasured location. In the Cross-validation exercise, a set of known 
readings following a particular uniform layout (see Figure 3) are used to test the models. In this 
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layout, all the values are known, only that other values are assumed to be unknown (L5, L6, L7) so 
that they are estimated using the models. 

 
 
 
 

 
Figure 3. Uniform layout of known samples used for the Model Semi-variogram Cross-validation exercise. 

A Cross-validation statistic is calculated for each unknown point (assumed to be unknown) in order 
to assess the model. The Cross-validation statistic (Z) together with its mean (μZ) and variance (σ2

Z) 
are determined using the following Equations. 

Z = 𝑇𝑇−𝑇𝑇∗

𝜎𝜎𝜖𝜖
                       μ𝑍𝑍  = 1

𝑛𝑛
∑𝑍𝑍𝑖𝑖                   𝜎𝜎𝑍𝑍2  = 1

𝑛𝑛
∑(𝑍𝑍𝑖𝑖)2  

Where: T is the true value; T* is the estimated value, calculated using Equation 2.  

𝑇𝑇∗ = w1𝑓𝑓1 + 𝑤𝑤2𝑓𝑓2 + 𝑤𝑤3𝑓𝑓3 +⋯𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛 (2) 

A model which accurately captures the underlying variability within the Experimental Semi-
variogram data should ideally yield a Cross-validation statistic mean (μZ) of zero and a Cross-
validation statistic standard deviation (σZ) of 1. This is because the variable Z, in this format, follows 
a normal distribution regardless of the distribution of T*. 

f is the measured fracture frequency in this case, and w is the weight of the sample used in the 
estimation. The sum of the weights is always equal to 1. The weight of the samples can be determined 
using the standard Inverse Distance Estimation Technique (IDET). However, the IDET method has 
several disadvantages, which makes it unable to produce optimum weights for the samples. Some of 
the disadvantages are that we are never certain which distance function to use, we are not sure how 
many samples should be included in the estimation of a point, we do not know how far we can go, 
in terms of distances, to include samples in the estimation of a point, our confidence in the estimated 
value is questionable since we cannot determine the confidence interval of our estimate among 
others. These shortcomings are overcome using the Ordinary Kriging Technique as discussed in 
section 2.1.4. 

σϵ is the standard deviation of the estimation errors, when using 4 known points to estimate an 
unknown point, σϵ is given as shown in Equation 3. The equation can be expanded using its obvious 
pattern to use as many as geostatistically possible known samples in the estimation procedure. These 
types of calculations are normally carried out using geostatistics software as the number of samples 
to be analysed, having been collected over a very long period of time, can easily become so many, 
the same applies with Ordinary Kriging (OK) calculations.  
 

𝜎𝜎𝜖𝜖2 = 2𝑤𝑤1𝛾𝛾(𝑑𝑑1) + 2𝑤𝑤2𝛾𝛾(𝑑𝑑2) + 2𝑤𝑤3𝛾𝛾(𝑑𝑑3) + 2𝑤𝑤4𝛾𝛾(𝑑𝑑4) 

−

⎩
⎨

⎧
𝑤𝑤1𝑤𝑤1𝛾𝛾(ℎ11) + 𝑤𝑤1𝑤𝑤2𝛾𝛾(ℎ12) +𝑤𝑤1𝑤𝑤3𝛾𝛾(ℎ13) + 𝑤𝑤1𝑤𝑤4𝛾𝛾(ℎ14)
+𝑤𝑤2𝑤𝑤1𝛾𝛾(ℎ21) +𝑤𝑤2𝑤𝑤2𝛾𝛾(ℎ22) + 𝑤𝑤2𝑤𝑤3𝛾𝛾(ℎ23) + 𝑤𝑤2𝑤𝑤4𝛾𝛾(ℎ24)
+𝑤𝑤3𝑤𝑤1𝛾𝛾(ℎ31) +𝑤𝑤3𝑤𝑤2𝛾𝛾(ℎ32) + 𝑤𝑤3𝑤𝑤3𝛾𝛾(ℎ33) + 𝑤𝑤3𝑤𝑤4𝛾𝛾(ℎ34)
+𝑤𝑤4𝑤𝑤1𝛾𝛾(ℎ41) + 𝑤𝑤4𝑤𝑤2𝛾𝛾(ℎ42) + 𝑤𝑤4𝑤𝑤3𝛾𝛾(ℎ43) + 𝑤𝑤4𝑤𝑤4𝛾𝛾(ℎ44)⎭

⎬

⎫
− 0     (3)   

Where: d is the distance between a known sample and the location to be estimated. h is the distance 
between known samples. 

2.1.4 Ordinary Kriging 

Ordinary Kriging (OK) is credited for being the Best Linear Unbiased Estimator (BLUE) as it gives 
the best estimate (Equation 2) of the value at an unmeasured location, at the narrowest confidence 
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interval (Equation 5) and smallest estimation error variance (𝜎𝜎𝑂𝑂𝑂𝑂2 ) (Equation 4). The OK procedure 
makes use of the Lagrangian multiplier (λ) to develop a system of equations (see below) which can 
be solved to get the optimum weights, which can be used in the estimation of the unknown value. 
OK procedure addresses most of the challenges associated with IDET. In geostatistical estimation, 
we are more interested in the level of confidence we have in our estimate, than just having the 
estimate itself. We can now determine the 95% confidence interval of the True value (T) by 
determining the lower limit and upper limit of the True value using Equation 5. Note that the narrower 
the confidence interval, the more accurate our estimate is. The level of accuracy is enhanced by 
choosing the best model using Cross-validation and using optimum weights determined from OK.  

 
w1γ(h11) + w2γ(h12) + w3γ(h13) + w4γ(h14) + λ = γ(d1) 
w1γ(h21) + w2γ(h22) + w3γ(h23) + w4γ(h24) + λ = γ(d2) 
w1γ(h31) + w2γ(h32) + w3γ(h33) + w4γ(h34) + λ = γ(d3) 
w1γ(h41) + w2γ(h42) + w3γ(h43) + w4γ(h44) + λ = γ(d4) 
w1              + w2             + w3               + w4            + 0 = 1 

𝜎𝜎𝑂𝑂𝑂𝑂2 = w1γ(𝑑𝑑1) + w2γ(d2) + w3γ(d3) + w4γ(d4) + λ      (4) 

                                 𝑇𝑇 = 𝑇𝑇∗ ± 1.9600 × 𝜎𝜎𝑂𝑂𝑂𝑂                                                                 (5) 

3 CONCLUSIONS 

Destress blasting plays a pivotal role in stress management in deep underground mines. In an 
endeavour to evaluate destress blasting efficiency, physical parameters such as deformation changes, 
local seismic magnitude changes, stress changes, and fracturing intensity among others are collected 
from different locations where destress blasting has been implemented. This leads to increased 
exposure of mining personnel to mining excavations, increasing the chances of harm in the event of 
safety failure. This paper presents a conceptual study on the use of geostatistical methods to 
accurately estimate the destress blasting efficiency at some of these locations, without physically 
visiting them to take measurements. This can be done with a high degree of accuracy using 
geostatistical spatial relations of locations as captured by a geostatistical model fitted on the actual 
experimental data of measured locations, lending credence to this approach as these practical 
observations are tethered in reality and to some extent account for several factors which affect rock 
behaviour, which may be difficult to account for using numerical modelling. The confidence interval 
of each estimate at an unmeasured location can be determined, realistically, to 95% accuracy using 
optimised sample weights determined from OK and a Semi-variogram model verified using the 
Cross-validation exercise.  
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