
ABSTRACT: Highly accurate seismic inversion results help refine geomechanical modeling. In this 
paper, a post-stack seismic sparse dictionary learning inversion method based on logging data is 
proposed. First, feature functions are extracted from the logging data. Then, a dictionary is learned 
adaptively from known observations. This dictionary is composed of a series of feature functions, 
using which the parametric model can be effectively characterized. This method effectively avoids 
the problem of single mathematical model assumptions. Finally, the post-stack wave impedance 
inversion data are solved, and the separation of wave impedance data is performed using the 
correlation between the velocity data and the density data. This method can effectively improve the 
resolution of seismic inversion results by extracting a priori information from logging data. It is found 
that the root-mean-square error of the sparse dictionary learning method is reduced by 9.075% 
compared to the Tikhonov method. 

Keywords: sparse dictionary learning, seismic inversion, highly accurate, geomechanical 
parameters. 

1 INTRODUCTION 

Due to the lack of drilled well data in the undeveloped area of the field, the only available information 
is seismic data. The seismic data effectively reflects the rich stratigraphic characteristics such as 
lithology, tectonics, and physical properties in the study area. However, the seismic data need to be 
analyzed and converted through a series of processing to obtain velocity data and density data of the 
study area which can be used as input data for geomechanical models. Currently, there are several 
methods of using seismic data to obtain the basic input data for geomechanical models. 

In conventional studies, the Dix formula is generally used to calculate the layer velocity as a basic 
geomechanical data (Dix, 1955; Gholami et al, 2019). The method is mainly based on the stacked 
velocity obtained from the raw seismic data. After dip and phase correction, the stacked velocity is 
converted to layer velocity. This method is simple and applicable. However, the accuracy depends 
on the stratigraphic position and the accuracy of the stacked velocity. In particular, the accuracy of 
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this method is not high when the dip angle of the stratum and the lateral variation of the velocity are 
large. 

In addition, the inversion method has made great progress in obtaining geomechanical parameters. 
Seismic inversion is the process of imaging the physical properties of subsurface rock formations 
using surface observed seismic data, constrained by known geological laws and drilling and logging 
data. Seismic inversion mainly includes pre-stack inversion and post-stack inversion according to the 
seismic data used in the seismic inversion technique (Hampson et al, 2005; Maurya et al, 2020). The 
pre-stack inversion mainly includes travel-time based laminar imaging technique and amplitude 
based AVO analysis technique. The post-stack inversion mainly includes travel-time based tectonic 
analysis technique and amplitude-based wave impedance inversion technique. The wave impedance 
inversion technique further separates the predicted wave impedance to obtain important basic 
geomechanical parameters such as velocity and density. 

In recent years, many researchers have explored the potential relationship between seismic and 
rock properties, and proposed many prediction models for geomechanical parameters based on 
artificial intelligence algorithms such as neural networks (Sun et al. 2020; Zhang et al. 2021; Chen 
et al. 2021). A nonlinear mapping relationship between seismic data and geomechanical parameters 
was established. Schultz proposed a method for predicting logging attributes using multiple seismic 
attributes (Schultz et al. 1994). They used logging and seismic data from 15 wells to train the 
relationship between seismic and logging attributes. Then they used the trained model to achieve 
prediction of stratigraphic attributes in undeveloped areas. Himmer and Link used a neural network 
approach to predict the porosity of the formation using properties such as seismic amplitude and 
transient amplitude (Himmer and Link et al. 1997). In addition, Schuelke and Hampson proposed a 
multi-attribute linear regression method to predict logging attributes using seismic data (Schuelke et 
al. 1998; Hampson et al. 2001). The method is based on linear regression to select the optimal single 
seismic attribute for logging parameter prediction. Then, the two optimal attributes containing that 
single best attribute are filtered. This process is continued until the prediction error of the cross-
validation data is no longer reduced. 

The data sources for the above methods to obtain the required geomechanical base parameters are 
all seismic data in the work area. Although seismic data contain rich medium-frequency information, 
they lack low and high-frequency information. The result is that the geomechanical data obtained by 
conversion of seismic data have a low-resolution problem in the vertical direction (Veeken et al. 
2004). The prediction results obtained using these data suffer from low resolution and large scale. 
The prediction results cannot meet the refined engineering design in drilling and development. 
Therefore, improving the vertical resolution of the predicted geomechanical base parameters is a 
problem that needs to be solved in the current study. 

2 METHODOLOGY 

2.1 Sparse dictionary-constrained wave impedance inversion 

The post-stack seismic record 𝑠𝑠𝑡𝑡  is the fold product of the stratigraphic reflection coefficient 
sequence 𝑟𝑟𝑡𝑡 and the seismic subwave sequence 𝑤𝑤𝑡𝑡, which can be expressed by the equation 

𝑠𝑠𝑡𝑡 = 𝑤𝑤𝑡𝑡 ∗ 𝑟𝑟𝑡𝑡  (1) 

The discrete form of this folded product model is 

𝑠𝑠𝑡𝑡 = �𝑟𝑟𝑘𝑘𝑤𝑤𝑡𝑡−𝑘𝑘

𝑝𝑝

𝑘𝑘=0

(2) 

where 𝑠𝑠𝑡𝑡 = {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛};𝑤𝑤𝑡𝑡 = {𝑤𝑤𝑜𝑜,𝑤𝑤1, … ,𝑤𝑤𝑚𝑚}; 𝑟𝑟𝑡𝑡 = �𝑟𝑟0, 𝑟𝑟1, … , 𝑟𝑟𝑝𝑝�,𝑛𝑛 > 𝑚𝑚,𝑛𝑛 > 𝑝𝑝. 
The discrete form of the folded product model can be expressed as a matrix form 
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The following relationship is derived from Russell's approximation formula 

𝑟𝑟(𝑡𝑡) =
𝑧𝑧𝑖𝑖+1 − 𝑧𝑧𝑖𝑖
𝑧𝑧𝑖𝑖+1 + 𝑧𝑧𝑖𝑖

≅
∆𝑧𝑧𝑖𝑖
2𝑧𝑧𝑖𝑖

=
∆ ln(𝑧𝑧𝑖𝑖)

2
(4) 

where 𝑧𝑧𝑖𝑖 is wave impedance. Write equation 4 in matrix form as 
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Substitute equation 4 into equation 3,  
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Write equation 6 as 
𝑠𝑠 = 𝐺𝐺𝐺𝐺 (7) 

where 𝐺𝐺 is the orthogonal matrix and 𝐺𝐺 is the logarithm of the stratigraphic wave impedance. Then, 
the objective function of the seismic inversion can be obtained 

𝐺𝐺 = argmin{‖𝑠𝑠 − 𝐺𝐺𝐺𝐺‖22} (8) 

The result of inversion is to solve the above objective function to obtain x. 
However, seismic inversion suffers from multi-solvability and low resolution, which are the main 

problems faced by traditional inversion methods. The most direct way to solve the inversion 
resolution problem is to add high and low frequency information for constrained inversion by means 
of regularization. If the Tikhonov regularization constraint is added, the objective function (8) is 
rewritten as the following equation 

𝐺𝐺 = argmin
𝑥𝑥

{‖𝑠𝑠 − 𝐺𝐺𝐺𝐺‖22 + 𝜆𝜆‖𝐷𝐷𝐺𝐺‖22} (9) 

where λ is the regularization parameter and the matrix D is the smoothing operator. Such 
regularization constraint methods assume that the strata satisfy a single distribution law and are no 
longer applicable to the problem of inversion of complex geological features.  

The introduction of high-frequency information from logging data can significantly improve the 
resolution of seismic inversion results. However, the method of introducing information from 
logging data based on regularization terms has the problem of insufficient mining of valid 
information. Sparse characterization methods based on learning dictionaries can solve this problem. 
The main component of dictionary learning is to learn a dictionary adaptively from logging data of 
drilled wells, which consists of a series of feature functions. These feature functions can effectively 
characterize the parametric model. Dictionary learning learns formation characteristics directly from 
logging data without making any assumptions about the structure of the formation model or the 
distribution of formation parameters. The method effectively avoids the problem of single model 
assumptions that exist in traditional inversion constraints. 

The workflow for dictionary learning using drilled well log data is shown in Figure 1. First, the 
sliding window size and sliding step size are selected. Second, obtaining the training sample set of 
the dictionary on the logging data. Third, feature training using dictionary learning algorithm. 
Finally, the wave impedance is sparsely characterized using the learned dictionary. 
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Figure 1. Sparse dictionary learning based on Logging Data. 

Using a dictionary-based sparse representation constraint instead of the traditional regularization 
constraint, equation (9) is rewritten in the following form 

𝐺𝐺 = arg min
𝑥𝑥, 𝑣𝑣𝑖𝑖

�‖𝑠𝑠 − 𝐺𝐺𝐺𝐺‖22 + 𝛽𝛽‖𝑦𝑦 − 𝐺𝐺‖22 + 𝜆𝜆�‖𝑅𝑅𝑖𝑖𝑦𝑦 − 𝐷𝐷𝑣𝑣𝑖𝑖‖22
𝑛𝑛

𝑖𝑖

� (10) 

∀𝑖𝑖: ‖𝑣𝑣𝑖𝑖‖0 ≤ 𝜀𝜀 (11) 

Where 𝜆𝜆 is the regularization factor; n represents the number of blocks obtained from each column 
of data; R is the block operator, 𝑅𝑅𝑖𝑖 is the ith block extracted by the sliding window along the direction 
of increasing depth of wave impedance; D is the sparse dictionary obtained in the previous step; 𝑣𝑣𝑖𝑖 
is the sparse coefficient of the ith block, and 𝜀𝜀 is the maximum allowed by the sparsity. 

The inverse problem is then subdivided into the following three subproblems 
𝐺𝐺𝑘𝑘+1 = argmin

𝑥𝑥
{‖𝑠𝑠 − 𝐺𝐺𝐺𝐺‖22 + 𝛽𝛽‖𝑦𝑦 − 𝐺𝐺‖22} (12) 
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The inverse result x is obtained by iteratively updating the three parameters in a continuous loop. 

2.2 Velocity and density separation 

The defining equation of wave impedance is 
𝐼𝐼 = 𝜌𝜌𝑣𝑣 (15) 

Where 𝜌𝜌 is density, 𝑣𝑣 is velocity. There is a significant correlation between the layer velocity and the 
stratigraphic density. For example, the well-known Gardner's empirical formula is 

𝜌𝜌 = 𝑎𝑎 ∙ 𝑣𝑣𝑏𝑏 (16) 

Where a and b are constant parameters. Bringing the above equation into the expression for wave 
impedance, we get 

𝐼𝐼 = 𝑎𝑎 ∙ 𝑣𝑣𝑏𝑏+1 (17) 
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Then, the wave impedance data can be separated into density data and velocity data. 

3 CASE STUDY 

An oil field in the Tyuritag tectonic zone of the Tarim Basin was selected as the object of study. The 
initial model is constructed using log data from three drilled wells, and the other well is used as a 
verification well, which is not involved in the construction of the initial model. Sparse dictionary 
constrained inversion of the established initial model to obtain depth domain impedance data. Figure 
2 show the wave impedance inversion results for the Tikhonov regularization constraint and the 
sparse dictionary constraint, respectively. The figures show a continuous well profile consisting of 
modeling and verification wells with a total of 549 CDP seismic traces. Comparing the inversion 
results, we can see that the sparse dictionary constrained inversion method has higher resolution. The 
method can better characterize the details of the stratum. 

 

Figure 2. Inversion results based on Tikhonov regularization constraints (left) and sparse dictionary learning 
constraints (right). 

In order to quantify the accuracy of the inversion results, we extracted the inversion results 
corresponding to one drilled well. Compared with the logging data, the root mean square error of the 
conventional method is 1.157, while the error of the sparse dictionary learning method is smaller at 
1.052. The sparse dictionary learning method improves 9.075% on this performance metric. 

Separate the high-resolution 3D wave impedance data obtained from the sparse dictionary-
constrained inversion of this area into velocity and density data. Figure 3 shows the 3D velocity and 
density data. Velocity and density data are the basic data of geomechanics and can be directly used 
for geomechanical modeling. 

  
Figure 3. 3-D depth domain p-wave velocity data (left) and density data (right). 
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CONCLUSIONS 

1. a post-stack seismic sparse dictionary learning inversion method based on logging data is 
proposed. The new method can effectively improve the resolution of seismic inversion results by 
extracting a priori information from existing logging data. 
 
2. The root-mean-square error of the sparse dictionary learning method is reduced by 9.075% 
compared to the Tikhonov method. 
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