
ABSTRACT: The implementation of closed-form solutions for stress and displacement fields around 
tunnels with arbitrary geometry, often based on the complex variable theory and the method of 
conformal mapping, can be quite challenging from a mathematical point of view. In this paper a 
solution strategy for the implementation of a chosen closed-form solution from literature is presented, 
including the possibility to account for rock mass anisotropy and arbitrary tunnel geometries. The 
evaluation of the involved elastic potential functions is described, respectively derivatives thereof, 
in terms of solving non-linear constrained optimization problems. To validate our approach, the 
analytical results for stresses and displacements around a tunnel with semicircular geometry are 
compared to numerical results from finite element computations. The outcome of the study should 
be regarded as a basis for the development of refined analytical solutions within anisotropic rock 
masses considering more realistic boundary conditions and effects such as material non-linearity. 

Keywords: analytical solution, complex variable theory, conformal mapping, tunnel displacements, 
non-linear optimization problem, transverse isotropic rock mass. 

1 INTRODUCTION 

For the derivation of closed-form planar elasticity solutions for stress and displacement fields around 
arbitrarily shaped tunnels in isotropic or anisotropic grounds the complex variable theory, as initiated 
by Kolosov (1909), in combination with the conformal mapping method (Muskhelishvili 1953) can 
be used. Thereby, the exterior of the original problem configuration is mapped to the outside or inside 
of a fictitious unit circle. Despite the complexity of the involved mapping procedure, the associated 
difficulties are outweighed by the simpler definitions of the elastic potential functions influencing 
the amount of generated stresses and displacements.  

One elastic closed-form solution based on the complex variable theory and the method of 
conformal mapping is the solution by Tran Manh et al. (2015). It accounts for arbitrary tunnel shapes 
and elastic rock mass anisotropy by the assumption over transverse isotropy. Mathematical 
optimization problems need to be solved in the course of determining the elastic potential functions, 
which is not a straightforward process. Consequently, in this paper a solution strategy to overcome 
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such difficulties in connection with complex variable solutions is provided. The assumption is made 
that the mapping coefficients of the conformal mapping function are already known, e.g. from an 
iterative scheme as presented by Winkler et al. (2023). Finally, the solutions for stresses and 
displacements of a specific case are compared with the results from finite element calculations. 
Section 2 refers to the problem definition. In section 3 the solution procedure for the determination 
of the derivatives of the elastic potentials and the retrieval of the final solutions are described. In 
section 4 the analytical solution is compared against results from finite element computations and 
section 5 presents the conclusions. 

2 PROBLEM DEFINITION 

In the solution of Tran Manh et al. (2015) the initial problem consists of a tunnel with an arbitrary 
geometry (in our case semicircular) excavated in an infinite elastic and transversely isotropic rock 
mass. The planes of isotropy are oriented at an angle β from the horizontal x* – axis along the local 
x´-y´- coordinate system in the original configuration (see Figure 1a). The initial stresses are assumed 
to be homogeneous and anisotropic with a vertical stress σ0 and a horizontal stress K0⋅σ0. The far-
field stresses σv0, σh0 and τvh follow a rotation of the planes of isotropy to the horizontal direction by 
the angle β. The rotated configuration (x-y-system), later referred to as the z-plane, is the 
configuration considered for the conformal mapping and the evaluation of the elastic potentials. 

 
Figure 1. a) Problem consideration and coordinate systems for the original configuration and the rotated 

configuration (after Tran Manh et al. 2015) and b) Conformal mapping of points from the physical z-plane 
onto the unit circle exterior in the ζ –plane . 

In Fig 1b) the mapping process of points from the z-plane to the exterior of a unit circle on the ζ-
plane is shown. In the solution of Tran Manh et al. (2015), the mapping of points p on the tunnel 
exterior in the z-plane, expressed in terms of the complex variable zp=xp+iyp, is carried out to the 
outside of a unit circle (p expressed as ζp=ρpeiθp with polar radius ρp and polar angle θp) based on the 
negative powers of the Laurent series (Eqn.1). In Eqn. (1) N represents the number of terms used in 
the series expansion. Higher values for N increase the mapping accuracy (here 3 is chosen). R is a 
constant mapping factor (size related) and Mn are the constant mapping coefficients (shape related). 
R and Mn are assumed to be already known in this study. 

 𝑧𝑧 = 𝜛𝜛(𝜁𝜁) = 𝑅𝑅 �𝜁𝜁 + �𝑀𝑀𝑛𝑛𝜁𝜁−𝑛𝑛
𝑁𝑁

𝑛𝑛=1

�  (1) 

The elastic potential U for transversely isotropic bodies in plane “hole-in-plate” elasticity problems, 
from which the solutions for stresses are derived, can be expressed by two analytical potential 
functions Ω1(z1) and Ω2(z2) and their conjugates depending on the complex variables z1 and z2 (Green 
& Zerna 1954).  
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 𝑧𝑧𝑘𝑘 = 𝑧𝑧 + 𝛾𝛾𝑘𝑘𝑧𝑧∗  (𝑘𝑘 = 1,2)  (2) 

with superscript * indicating the complex conjugate of z and γk representing a derived material 
constant related to the anisotropic elastic parameters defined with respect to the local x’-y’-system. 
The final aim of the solution procedure is to determine the first and second order derivatives of the 
potential functions as they appear in the final solutions for the stresses and displacements. Detailed 
formulae for any derived material constants and the required derivatives of potentials Ω1 and Ω2, as 
included in the final equations for stresses and displacements, are given in Tran Manh et al. (2015). 

3 SOLUTION PROCEDURE 

3.1 Mapping from zk-planes to ζk-planes  

The derivatives of the potentials Ωk (k = 1, 2), as part of the equations for stresses and displacements 
stated in Tran Manh et al. (2015), are defined as functions of points ζk on the ζk –planes corresponding 
to points zk on the zk-planes. Therefore, in a first step points ζk need to be determined from points zk. 

 
Figure 2. Representation of closed lines associated with constant values θ and radial lines associated with 

constant values ρ from the ζ-plane in the tunnel exterior within planes z, z1 and z2. 

Figure 2 depicts a graphical representation of the tunnel exterior on planes z and zk, by displaying 
mapped groups of points with constant radius ρ or constant polar angles θ from the ζ-plane using 
Eqns. (1) and (2) and taking into account the known mapping coefficients. 

It is noticeable from this figure that parameter γk fictively yields a stretching, respectively 
squeezing, of the medium as compared to the z-plane. This enables taking into account the effects of 
transverse isotropy in a subsequent step when the elastic potentials Ωk(zk(ζk))(k = 1,2), respectively 
derivatives thereof, are computed for single discrete points ζk on the corresponding unit circle 
domains (ζk - planes).  

In order to evaluate points ζk, a mapping relation between discrete points ζk and zk as stated in 
Eqn. (7) can be set up by plugging Eqn. (1) into Eqn. (2) and applying some mathematical 
simplifications.  

 𝑧𝑧𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅� 𝑐𝑐𝑘𝑘𝑛𝑛𝜁𝜁𝑘𝑘𝑛𝑛 + 𝑑𝑑𝑘𝑘𝑛𝑛𝜁𝜁𝑘𝑘−𝑛𝑛
𝑁𝑁

𝑛𝑛=1

, for 𝑘𝑘 = 1,2  (3) 

with ck1 = 1+γkM1*, dk1 = M1+γk and ckn = γkMn* and dkn = Mn for n ≥2. Each discrete point ζl,k = ρl,keiθl,k 
(l = 1 to number of discrete points in zk-plane) corresponding to a known discrete point zl,k = xl,k+iyl,k 
is determined by solving a non-linear constrained optimization problem defined as 
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min𝑓𝑓�𝜌𝜌𝑙𝑙,𝑘𝑘 ,𝜃𝜃𝑙𝑙,𝑘𝑘�

= ��𝑅𝑅𝑒𝑒�𝑧𝑧𝑙𝑙,𝑘𝑘 − 𝑧𝑧𝑙𝑙,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚�𝜌𝜌𝑙𝑙,𝑘𝑘 ,𝜃𝜃𝑙𝑙,𝑘𝑘���
2 + �𝐼𝐼𝑚𝑚�𝑧𝑧𝑙𝑙,𝑘𝑘 − 𝑧𝑧𝑙𝑙,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚�𝜌𝜌𝑙𝑙,𝑘𝑘 ,𝜃𝜃𝑙𝑙,𝑘𝑘���

2 

s. t.  ��𝜌𝜌𝑙𝑙,𝑘𝑘 cos𝜃𝜃𝑙𝑙,𝑘𝑘�
2 + �𝜌𝜌𝑙𝑙,𝑘𝑘 sin𝜃𝜃𝑙𝑙,𝑘𝑘�

2 ≥ 1 (unit circle exterior) 

(8) 

In order to solve the above stated problem, any of the available non-linear constrained minimization 
routines can be used. In this study, the SLSQP (Sequential Least Squares Programming) algorithm 
as part of Phyton’s scipy.optimize module (Jones et al.) is applied to solve for unknown points 
ζk.  

 
Figure 3. Representation of associated points on the tunnel exterior within planes z, ζ1 and ζ2. 

The points ζk are subsequently used for the computation of the required first and second order 
derivatives of the stress potentials Ωk, as part of the final equations (Tran Manh et al. 2015) for 
stresses and displacements arising from the tunnel excavation. To correspond these calculated 
quantities to physical locations of points in the rock mass, they are assigned to points z in the z-plane 
that were originally computed (Eqn. 1) from the same discrete points ζ, with polar coordinates ρ and 
θ, as the points zk on the zk-planes using Eqn. (2). Figure 3 shows optimized point locations on the 
ζk-planes corresponding to the associated points on the z-plane. Equally colored points on the shown 
planes, different from black, show points with constant polar angles θ from the ζ-plane. 

3.2 Final solutions 

Once the derivatives of the stress potentials Ωk, are found for each point on the z-plane, the stress and 
displacement field changes arising from the relaxation of the internal pressure by a stress release 
factor λ can be determined using formulae presented in the paper of Tran Manh et al. (2015). To 
receive the final stress field for the given problem in the rotated configuration (see Figure 1a) the 
computed changes in the stresses must be superimposed on the initial values for the stress 
components. In a final step, the whole system, including the geometry and the stress and displacement 
fields must be rotated back into the original configuration.  

4 RESULTS  

To validate the implemented analytical solution a numerical finite element model was set up in 
Plaxis2D (PLAXIS Reference Manual: 2D - Connect Edition V22). A semicircular tunnel with radius 
R = 6.5 m was studied. The jointed rock constitutive model with a transversely isotropic stiffness 
formulation was employed to model the elastic anisotropic response of the rock mass. Any 
plastification of the continuum was prevented by setting the strength parameters to artificially high 
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values. A homogenous initial stress field without any stress gradients was taken into account. The 
initial vertical stress component was assumed with a value of σ0 = 5.25 MPa. A K0-coefficient of K0 
= 0.75 was applied to model the initial horizontal stresses. The computation was carried out for a full 
relaxation of the internal pressure (λ=1.0) and the orientation of the planes of isotropy was modelled 
at an angle β=30° from the horizontal axis. The elastic parameters of the rock mass and the values 
for the mapping coefficients (rotated configuration) were considered as given in Table 1. 

Table 1. Elastic parameters of the rock mass and considered mapping coefficients for the validation case 

Parameter Unit Symbol Value Mapping Coefficients 
(Rotated Configuration) 

Young’s modulus [MPa] Ey’ 10500 R = 4.952 − 0.00i 
M1 = 0.1541 − 0.2676i 
M2 = −0.1394 − 0.0010i 
M4 = 0.0168 + 0.0272i 

Poisson’s ratio [-] νy’x’ 0.3 
Young’s modulus [MPa] Ex’ 15800 
Poisson’s ratio [-] νx’z’ 0.3 
Shear modulus [MPa] Gy’x’ 3950 

 

 
Figure 4. Contour plots for resulting a) displacements and b) stresses from the numerical and analytical 

solutions in the x*-y*-coordinate system. 
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Figure 4 compares the numerical and analytical results in terms of contour plots of displacements 
and stresses in the global Cartesian system (original configuration acc. to Figure 1). Overall, a very 
good agreement between the results from both calculation approaches can be seen. Any visual 
differences are attributed to the approximation of the geometry and the domain discretization density 
in the analytical solution. Further, the numerical solutions might slightly be influenced by boundary 
effects, from the fixation of the deformation boundaries, and/or the density of the finite element 
mesh. However, a sensitivity study on the influence of the mesh density on the results from the finite 
element solution was not carried out. 

5 CONCLUSION AND OUTLOOK  

An implementation strategy for an analytical elastic transversely isotropic solution by Tran Manh et 
al. (2015) for stress and displacement fields in the exterior of unlined tunnels with arbitrary geometry 
based on the theory of complex variables in 2D has been presented.  

A procedure for the determination of the tunnel exterior point locations on the kth unit circle 
planes, as required for the computation of the elastic stress potentials, has been proposed connected 
with the solution of corresponding non-linear constrained optimization problems. The solution of the 
final results has been stated to follow from a superposition of the initial (stress) state and a back 
rotation of the rotated system into the system with an original orientation of the planes of isotropy. 
The suggested solution procedure has been verified by comparing the results of the closed-form 
solution to the results of a numerical finite element simulation. For the given boundary value problem 
both approaches resulted in the same magnitude and similar distribution of stresses and 
displacements over the tunnel exterior.  

In future, the presented procedure can be applied to more complex closed-form solutions based 
on the complex variable theory and the method of conformal mapping. It can be extended to include 
possibilities for the consideration of tunnel supports, material non-linearity or the interaction of 
multiple tunnel tubes. Possible fields of applications are shape and lining optimizations in the course 
of tunnel designs and the back analysis of lining stresses based on tunnel deformational data and 
geometry data from laser scanning profiles. 
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