
ABSTRACT: Time of failure (TOF) estimation of rock slope instabilities is one of the most important 
output of slope monitoring activities. Providing an accurate TOF estimation allows to significantly 
mitigate the risk associated with slope failure. Various kinematic models to describe the evolution of 
instabilities are available in literature, the most representative one is the hyperbolic evolution found 
by Saito. Different techniques have been proposed and used to fit the Saito model to the experimental 
data, among these, inverse velocity (IV) method and slope gradient (SLO) method are probably the 
most popular. However, with the recent development of near real-time monitoring systems, and with 
modern computing power, it is conceivable to approach the TOF estimation with powerful non-linear 
regression methods. In the present work, non-linear regression analysis of Saito's model is presented 
and tested on slope collapse datasets acquired from Ground-Based Synthetic Aperture Radar (GB-
SAR) systems. 
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1 INTRODUCTION 

Slope monitoring is a critical activity that aims to mitigate the risks associated with slope failure. 
Among its various output, time of failure (TOF) estimation is certainly one of the most important 
(Intrieri et al. 2019), in fact providing a reliable TOF forecast allows to significantly reduce the 
likelihood of both human and economic losses. With the recent development of more and more 
advanced monitoring technologies like Ground-Based Synthetic Aperture Radar (GB-SAR) systems 
(Wang et al. 2020), the forecasting methods based on deformation measures (Mercer 2006) have 
gained considerable importance and have proved to be remarkably effective (Praveen et al. 2022). 

Various kinematic models to describe the evolution of instabilities have been proposed and tested 
in literature (Federico et al. 2012), certainly the most successful one is the power law evolution, 
originally found by Saito (1965) and later investigated by Voight (1988). Starting from this model, 
different methods have been developed to estimate its critical time from the experimental data, 
among these, the inverse velocity (IV) (Fukuzono 1985), and slope gradient (SLO) (Mufundirwa et 
al. 2010) are probably the most popular among technicians (Dick et al. 2015). The success of these 
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methods is due, in addition to their effectiveness, to their computational simplicity and intuitive 
graphic interpretation. However, with the availability of modern computing powers it is conceivable 
to approach the TOF estimation with more rigorous statistical methods.  

The purpose of this work is to present a TOF forecast approach based on the Bayesian estimation 
theory (Rossi 2018) and to verify its applicability to a real GB-SAR dataset. In section 2 the 
theoretical framework of non-linear regression analysis for TOF estimation is discussed. In section 
3 the proposed method is tested on a slope collapse dataset, acquired by a GB-SAR system. In section 
4 conclusion and further developments are presented. 

2 KINEMATIC ANALYSIS METHODS 

The most common TOF forecasting methods are those based on the measure and analysis of slope 
kinematic parameters (Mercer 2006) such as deformation 𝜂𝜂, deformation rate �̇�𝜂 and acceleration �̈�𝜂. 
The basic assumption of these methods is that, during the tertiary creep stage, it is possible to define 
a general function �̇�𝜂(𝑡𝑡,𝜽𝜽) that relates the kinematics parameters to time 𝑡𝑡, through some constant 
unknown parameters 𝜽𝜽. Once this functional relationship has been defined, an estimation 𝜽𝜽� of the 
unknown parameters can be derived empirically from the measured data. Finally, the TOF estimation 
�̂�𝑡𝑓𝑓 can be extracted by imposing a failure condition on the model. For completeness, after obtaining 
the TOF estimation, a further phase must also be added to the methods: the assessment of the TOF 
forecast reliability, including the estimation of a TOF plausibility interval. 

2.1 Model definition 

The functional relation between kinematic parameters and time can be defined by introducing a 
dimensionless parametric function 𝑓𝑓(𝑥𝑥,𝜶𝜶) that models the deformation rate time dependence as  

  �̇�𝜂(𝑡𝑡) = 𝑣𝑣 ⋅ 𝑓𝑓(𝑢𝑢 ⋅ (𝑡𝑡 − 𝑡𝑡0),𝜶𝜶) (1) 

Where 𝑣𝑣 and 𝑢𝑢 are two dimensional parameters having respectively dimensions of velocity and 
inverse of time, 𝜶𝜶 is a set of dimensionless parameters which may or may not be present depending 
on the complexity of the model, and 𝑡𝑡0 is a reference time which can be fixed arbitrarily. Applying 
a simple reparameterization, 𝑓𝑓(𝑥𝑥,𝜶𝜶) can always be chosen in such a way that 𝑣𝑣 represent the velocity 
at the reference time and 𝑢𝑢 ⋅ 𝑣𝑣 the corresponding acceleration. For sake of simplicity, in the following 
𝑡𝑡0 will be understood as the present time i.e. the time at which the forecast is performed, and will be 
set equal to zero.  

Over the years, several parametric functions have been proposed for modelling the slope 
kinematics during the tertiary creep stage, although no one of them is universally accepted for 
describing the accelerating creep rates, most of the forecasting methods (Intrieri et al. 2019 and 
Federico et al. 2012), exploit the power law relation (2) coming from the seminal observations by 
Saito (1965) on the slopes creep behavior (generalized Saito model). 

 𝑓𝑓(𝑥𝑥,𝛼𝛼) = �1 −
𝑥𝑥

𝛼𝛼 − 1
�
1−𝛼𝛼

     𝛼𝛼 > 1 (2) 

This class of functions is characteristic of a variety of complex systems, which exhibit self-organized 
criticality as precursors of large-scale disruptions (Hagstrom & Levin 2021). The main characteristic 
of generalized Saito model is that it has a critical time 𝑡𝑡𝑐𝑐 in which the deformation rate diverges, and 
which therefore provides a natural upper bound for the TOF estimation. Combining (1) and (2) it is 
possible to see that the parameter 𝑢𝑢 and the critical time 𝑡𝑡𝑐𝑐 are inversely proportional. 

Among all the possible values of 𝛼𝛼, the one that has proven to be the most common in slope 
instabilities is 2 (pure Saito model). In the present work we will focus on the pure Saito model 
regression, however the theoretical framework described is easily applicable to any other parametric 
model. 
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2.2 Parameters estimation 

Given a set of 𝑁𝑁 kinematic measurements {𝑡𝑡𝑛𝑛, �̇�𝜂𝑛𝑛}𝑛𝑛=1𝑁𝑁  and the parametric model (1), the residuals 
𝑟𝑟𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝜶𝜶), are defined as the difference between deformation rate observations �̇�𝜂𝑛𝑛 and the kinematic 
model evaluated at the corresponding observation time: 𝑣𝑣𝑓𝑓(𝑢𝑢𝑡𝑡𝑛𝑛,𝜶𝜶). Residuals can be interpreted as 
the errors made with respect to the true underlying model. Following a Bayesian approach, it is 
possible to estimate the model parameters (𝑢𝑢� , 𝑣𝑣�,𝜶𝜶�) via maximization of the likelihood function ℒ 
that, under the normality assumption for errors, can be expressed as 

 

ℒ(𝑢𝑢, 𝑣𝑣,𝜶𝜶�{𝑡𝑡𝑛𝑛, �̇�𝜂𝑛𝑛}𝑛𝑛=1𝑁𝑁 )

=
1

�(2𝜋𝜋)𝑁𝑁|𝚺𝚺|
exp �−

1
2
� 𝑟𝑟𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝜶𝜶)Σ𝑛𝑛𝑛𝑛−1 𝑟𝑟𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝜶𝜶)
𝑁𝑁

𝑛𝑛,𝑛𝑛=1

� 

(𝑢𝑢� , 𝑣𝑣�,𝜶𝜶�) = arg max
𝑢𝑢,𝑣𝑣,𝜶𝜶

ℒ(𝑢𝑢, 𝑣𝑣,𝜶𝜶�{𝑡𝑡𝑛𝑛, �̇�𝜂𝑛𝑛}𝑛𝑛=1𝑁𝑁 ) 

(3) 

where 𝚺𝚺 is the measurements covariance matrix that, in most practical cases, is not known a priori. 
In these cases, it is therefore useful to assume a simplified model for the errors, dependent only on a 
standard deviation parameter 𝜎𝜎 and possibly on a set of dimensionless parameters 𝜿𝜿. These additional 
parameters can be considered as nuisance parameters, to be estimated together with the other 
unknown parameters. 

The simplest assumption on the covariance matrix is to consider the deformation rate measures 
as independent and with same variance (homoschedasticity). With this simplification, the Maximum 
Likelihood Estimation (MLE) problem (3) is reduced to the well-known Least Square Estimation 
(LSE), which can be further reduced by noting that the dependence on 𝑣𝑣 is quadratic and can therefore 
be eliminated analytically from the least squares functional. 

It should be noted that the usage of LSE is justified by the assumption of normality and 
homoschedasticity of the errors. While these conditions seem reasonable in direct measurements �̇�𝜂𝑛𝑛 
they are certainly violated after a variable transformation such as inversion �̇�𝜂𝑛𝑛−1 or multiplication by 
time 𝑡𝑡𝑛𝑛 ⋅ �̇�𝜂𝑛𝑛 . In all methods that require these transformations, like IV and SLO, the usage of LSE 
can lead to relevant biases in the final estimation. To reduce estimation bias, various authors (e.g. 
Carlà et al. 2017 and Mazzanti et al. 2015) recommend performing moving averages before 
implementing those methods. Temporal filtering of the measurements, while showing an excellent 
bias mitigation, is a data processing step that requires the arbitrary choice of an averaging window. 
Using a non-linear LSE directly on the measured data, allows the estimation to be performed without 
previous time filtering, ensuring the best possible estimation in the Bayesian interpretation. 

It should also be noted that the homoschedasticity assumption is not entirely correct when velocity 
measurements are derived from displacement measurements. In this case two consecutive velocity 
measures are always anticorrelated, and the covariance is best represented by a tridiagonal matrix. A 
further weakness of homoschedasticity, is the assumption that errors have the same variance across all 
measurements. When this is not the case (heteroskedasticity), the MLE of the parameters will be biased 
and likelihood function should be modified to incorporate the precise form of heteroscedasticity. 

All these variations on measurement errors model are clearly applicable in a non-linear regression 
of velocity measurements, while it is not equally clear how to apply them after a transformation of 
the variables, as is the case for the SLO and IV methods. 

2.3 Failure condition 

To determine the TOF starting from a kinematic model, it is not sufficient to estimate its unknown 
parameters, but it is also necessary to impose a kinematic failure condition. Usually, this condition 
is given by a velocity threshold 𝑣𝑣𝑓𝑓 which identifies the occurrence of the failure: 

  𝑣𝑣𝑓𝑓 = 𝑣𝑣 ⋅ 𝑓𝑓(𝑢𝑢𝑡𝑡𝑓𝑓 ,𝜶𝜶) (4) 
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Inverting this relation, it is therefore possible to compute the time of failure in terms of the model 
parameters: 𝑡𝑡𝑓𝑓(𝑣𝑣𝑓𝑓 , 𝑢𝑢, 𝑣𝑣,𝜶𝜶). For pure Saito model this correspond to 

  𝑡𝑡𝑓𝑓 = 𝑢𝑢−1�1− 𝑣𝑣/𝑣𝑣𝑓𝑓� (5) 

which shows that, using Saito’s critical time 𝑢𝑢−1 instead of true TOF 𝑡𝑡𝑓𝑓, can be considered a good 
approximation as long as the current velocity 𝑣𝑣 is much smaller than the expected failure velocity 
𝑣𝑣𝑓𝑓. In the following for simplicity, TOF will always be assumed equivalent to critical time. 

2.4 Goodness of forecast 

Once the TOF has been estimated, it is possible to investigate its plausibility range, i.e. what 
underlying values of 𝑡𝑡𝑓𝑓 could plausibly have produced the observed data. The relative likelihood 
ratio 𝑅𝑅(𝑢𝑢, 𝑣𝑣|𝑢𝑢� , 𝑣𝑣�)  helps answer this question.  

Relative likelihood of any Saito’s parameters values may be found by comparing the likelihoods 
ℒ(𝑢𝑢, 𝑣𝑣�{𝑡𝑡𝑛𝑛, �̇�𝜂𝑛𝑛}𝑛𝑛=1𝑁𝑁 ) with the maximum one ℒ(𝑢𝑢� , 𝑣𝑣��{𝑡𝑡𝑛𝑛, �̇�𝜂𝑛𝑛}𝑛𝑛=1𝑁𝑁 ). Being primarily interested in the 
plausibility of TOF and therefore of 𝑢𝑢, the relative likelihood can be marginalized over 𝑣𝑣. Once 
marginalized relative likelihood 𝑅𝑅(𝑢𝑢|𝑢𝑢� , 𝑣𝑣�) is computed, it is possible to define likelihood intervals. 
A likelihood interval 𝑈𝑈𝑈𝑈 with a confidence level 𝑈𝑈 is the set of all values of 𝑢𝑢 whose relative 
likelihood is greater than a given threshold 𝜆𝜆𝑈𝑈, that is usually derived from the quantile function of 
the standard normal distribution. Finally, to assess the reliability of TOF forecast, it is possible to 
compare the TOF likelihood interval size with the TOF estimated value: when the ratio tends to zero, 
the reliability level will correspondingly tends to 1. 

3 CASE STUDY 

To better illustrate the method discussed above, regression analysis of pure Saito model has been 
applied on a slope collapse dataset, acquired by the IDS GeoRadar IBIS-FM GB-SAR system (Farina 
et al. 2011) The analyzed event took place in an open-pit copper gold mine at 18:48 29/11/2014 UTC 
time. IBIS-FM system continuously acquired deformation data throughout the evolution of the slope 
failure, with an acquisition time interval of 5 minutes. 

To validate the non-linear regression approach, a 24 hours time interval consisting of 284 GB-
SAR measurements, has been selected. The time interval was chosen to end exactly 24 hours before 
the actual collapse. In Figure 1 the corresponding GB-SAR displacement map is shown, with the pre-
failure slope deformation clearly visible. 

 
Figure 1. GB-SAR 24 hours displacement map [mm] acquired 24 hours prior the collapse. 

From the reliability map (Figure 2), computed according to section 2.4, it is possible to distinguish 
between actually accelerating points and stable or noisy points. Figure 3 shows estimated parameter 
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𝑢𝑢� map, after having filtered out all the points with reliability lower than 0.5. From the spatial 
distribution of 𝑢𝑢�, it is possible to notice a substantial uniformity of the estimated TOF, which likely 
indicates a simultaneous collapse of the entire moving area. 

 
Figure 2. Reliability map obtained from pure Saito model regression. 

 
Figure 3. Estimated u parameter map [1/day] obtained from pure Saito model regression. 

 
Figure 4. GB-SAR velocity time series [mm/day] and TOF forecast. 

A time series has been extracted from the fastest part of the moving area. Regression analysis results 
are displayed in Figure 4. The difference between estimated and true TOF is only about 15 minutes. 
Likelihood interval at 90% of confidence provides a bandwidth on the estimated TOF of about ±3 
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hours, which can be a useful additional information for technicians who must decide on hazard 
response operations. 

4 CONCLUSION 

In the present work, non-linear regression analysis of kinematics models for TOF forecast has been 
discussed. The method presented has some advantages over other typical estimation methods, such 
as no time filtering needing and possibility of measurements errors modeling. 

The validation on a real GB-SAR dataset showed the effectiveness of the proposed method and 
its potential for integration into an automatic alarm system. 

Future works will focus on a systematic comparison with the well-assessed IV and SLO methods, 
and on the development of an automatic algorithm for the generation of real-time alarms. 
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