
ABSTRACT: The abrasiveness of rocks being excavated is a major challenge in TBM tunneling, as 
it affects the performance and durability of cutting tools. The Cerchar abrasivity Index (CAI) is a 
widely used method to assess rock abrasiveness and predict tool wear and cutter life in TBM 
tunneling. The CAI can be estimated from rock properties, such as compressive strength, tensile 
strength, and petrographic factors. A novel approach using symbolic regression was proposed to 
predict CAI. Symbolic regression can generate accurate and interpretable mathematical equations to 
capture the relationship between inputs and outputs. The proposed approach was compared to 
traditional machine-learning-based regression models using a dataset obtained from published 
articles and geotechnical data reports. Various machine-learning-based regression methods were also 
used to forecast the CAI, and their performances were compared. The proposed symbolic regression-
based CAI prediction model has the potential to improve the performance of models for predicting 
rock abrasivity. 
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1 INTRODUCTION 

Tunnel boring machines (TBM) have become increasingly common in underground excavation 
projects. One of the major challenges in TBM tunneling is the abrasiveness of the rocks being 
excavated, which can have a significant impact on the performance and durability of cutting tools.  

 
The Cerchar abrasivity index (CAI) is a widely used method for assessing the abrasiveness of 

rocks and has been shown to be an effective tool for predicting tool wear and cutter life in TBM 
tunneling. One advantage of using CAI to predict rock abrasiveness is that it is a simple and effective 
method for estimating the abrasiveness of rocks. The CAI can be determined from a relatively small 
number of simple laboratory tests, which makes it a practical and cost-effective option for many 
engineering applications. One way to estimate CAI values without direct experimentation is to use 
rock properties such as compressive strength, tensile strength, and petrographic factors. This 
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approach can be useful in cases where direct CAI measurements are not available, or where additional 
information about rock properties is desired.  

Several studies have investigated the feasibility of using rock properties to estimate the CAI. The 
CAI was found to be strongly influenced by the degree of cementation, strength and amount of 
abrasive minerals, that is, the quartz content or equivalent quartz content in the rocks (Al-Ameen & 
Waller 1994, Plinninger et al. 2003, Rostami et al. 2014, Moradizadeh et al. 2016, Ko et al. 2016, 
Yaralı 2017, Ozdogan et al. 2018, Kahraman et al. 2018, Erarslan 2019).  

Recently, machine-learning-based regression models have been proposed to estimate CAI using 
rock properties (Kwak & Ko 2022). These models can handle complex data and nonlinear 
relationships between variables, and may offer improved accuracy compared to empirical equations. 
Although machine learning models have shown great potential for predicting the CAI, some 
limitations still need to be addressed. One issue is the lack of interpretability of the models, which 
means that it is often difficult to understand how the model arrives at its predictions. Another 
challenge is the need for large amounts of high-quality training data, which may be difficult and 
expensive to obtain. Finally, some machine learning models may be overfitted to the training data, 
which means that they perform well on the training data but poorly on the new data. 

To overcome these limitations, we propose a novel approach using symbolic regression for 
predicting CAI. Symbolic regression is a powerful technique that can generate mathematical 
equations that accurately capture the relationship between inputs and outputs. It has the advantage of 
producing models that are not only highly accurate, but also interpretable, making it easier for 
engineers to understand the underlying relationships between the input and output variables (Zhang 
et al. 2021). 

In this study, we present a symbolic regression-based CAI prediction model and compare its 
performance with that of traditional machine-learning-based regression models. The proposed 
symbolic regression-based CAI prediction model has the potential to significantly improve the 
performance of models for predicting rock abrasivity, which can have important applications in the 
design and optimization of underground excavation and TBM tunneling operations. 

2 DATA PREPARATION 

The data used in this study were obtained from published articles and geotechnical data reports on 
tunneling projects worldwide. The dataset consisted of 417 observations, including CAIs, rock types, 
and strength parameters such as uniaxial compressive strength (UCS) and Brazilian tensile strength 
(BTS), as well as petrographic factors such as equivalent quartz content (EQC). The observations 
were divided into two groups: a training set comprised 70% of the data and a test set comprising the 
remaining 30%. A histogram of the variables is shown in Figure 1, with CAI as the dependent feature 
and the others as independent features. 

3 MACHINE LEARNING-BASED REGRESSION ANALYSES 

Various machine learning-based regression methods were used in this study to forecast the CAI, such 
as linear regression, ridge regression, lasso regression, Elastic Net regression, support vector 
regression (SVR), decision tree regression, k-nearest neighbor (KNN) regression, random forest 
regression, XGBoost regression, gradient boosting regression, and AdaBoost regression. Each 
technique has a unique way of modeling the relationship between the dependent variable (CAI) and 
the independent variables, and this study aimed to compare the performance of these different 
methods in predicting CAI. 

Linear regression attempts to establish a linear relationship between a dependent variable (such 
as CAI) and one or more independent variables. Ridge regression adds a penalty term to ordinary 
least squares (OLS) regression to prevent overfitting. Meanwhile, lasso regression adds a penalty 
term to OLS regression with a different constraint, resulting in feature selection and overfitting 
prevention. Elastic net regression is a combination of both Ridge and Lasso regression techniques, 
with the aim of balancing their strengths. 
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Support vector regression (SVR) uses support vector machines (SVM) to build a nonlinear 
regression model. Decision tree regression builds a decision tree to model the relationship between 
independent and dependent variables. KNN regression predicts the value of the dependent variable 
by examining the values of the KNN. Random forest regression builds an ensemble of decision trees 
to decrease overfitting and improve prediction accuracy. Gradient boosting regression constructs an 
ensemble of weak prediction models (usually decision trees) and optimizes them to minimize the 
loss function. XGBoost regression is a gradient-boosting regression method that utilizes an optimized 
distributed gradient-boosting library to build a regression model. Finally, AdaBoost regression builds 
an ensemble of weak prediction models and weights them based on their performance to enhance 
prediction accuracy. 

 
Figure 1. Variable distribution. 

Table 1 presents the results of the machine-learning-based regression analyses used for model 
evaluation. The findings indicated that KNN regression was the most effective among the machine 
learning-based regression models. The KNN regression achieved an R2 value of 0.74, which was the 
highest among all the machine-learning-based regression models evaluated for training data. 
Additionally, the RMSE value was the lowest among all machine learning-based regression models 
at 0.55 for the training data. For the test data, the KNN model exhibited the highest R2 value of 0.63, 
and the lowest MAPE and RMSE values were 32.44% and 0.71, respectively. The results indicate 
that KNN regression was the best model for machine learning-based regression.  

Table 1. Model evaluation based on machine learning-based regression analysis. 

Model Training data Test data 
MAPE(%) RMSE R2 MAPE(%) RMSE R2 

Linear 36.64 0.77 0.48 44.5 0.85 0.46 
Ridge 36.64 0.77 0.48 44.5 0.85 0.46 
Lasso 36.85 0.77 0.48 44.84 0.86 0.46 
Elastic Net 36.79 0.77 0.48 44.73 0.85 0.46 
Random Forest 27.74 0.61 0.68 42.46 0.76 0.58 
XGB 26.75 0.58 0.71 39.98 0.73 0.61 
Decision Tree 22.39 0.57 0.71 34.88 0.72 0.62 
KNN 23.92 0.55 0.74 32.44 0.71 0.63 
Gradient Boosting 27.17 0.57 0.72 39.67 0.71 0.63 
AdaBoost  31.02 0.63 0.66 43.9 0.78 0.56 
SVR 37.93 0.78 0.48 45.62 0.85 0.47 

 

CAI

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

1.4%

4.8%

10.3%
11.0%

16.5%

9.6%

8.4%

2.4%

0.0%
0.7%

EQC

Fr
eq

ue
nc

y

0 10 20 30 40 50 60 70 80 90 100 110
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

3.6%
4.8%

9.4%

17.0%

20.6%

9.8% 9.8% 10.1%

2.2%

0.2%

Rock Types

Fr
eq

ue
nc

y

0

8%

16%

24%

32%

40%

48%

39.8%

35.0%

25.2%

Igneous Rock Sedimentary Rock Metamorphic Rock

UCS [MPa]

Fr
eq

ue
nc

y

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

15.1%

9.4%
10.1%

13.2%

8.2%

6.5%

3.4%
4.1%

1.4%
0.5%

BTS [MPa]

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

7.4%

12.2%

14.9%

12.9%

7.0%
6.0%

2.6%
1.7%

0.2% 0.7%
0.0%

-652-



Figure 2 shows the KNN regression plots for both training and test sets. 

Figure 2. KNN regression plot. 

4 SYMBOLIC REGRESSION ANALYSES 

Symbolic regression is a machine learning technique that involves automatically searching for 
mathematical expressions that best fit a given dataset. Its advantages include the ability to discover 
complex relationships between input variables and output, as well as the potential to generate 
interpretable models that provide insights into the underlying processes. 

Symbolic regression typically uses mathematical expressions that involve basic mathematical 
operations, such as addition, subtraction, multiplication, division, and exponentiation. Additionally, 
other functions, such as logarithmic, trigonometric, and exponential functions, are included in the 
candidate expressions. 

To evaluate the fitness of candidate expressions, a fitness function is defined based on the specific 
problem being addressed. In symbolic regression, the fitness function measures the difference 
between the predicted output of the candidate expression and the actual output of the training dataset. 
The goal is to minimize this difference, which is also known as an error or loss function. The selection 
process involved selecting the best-performing candidate expressions from the current population to 
be used as parents for the next generation. This is typically performed using a fitness-proportional 
selection method, such as roulette wheel selection, where the probability of a candidate expression 
being selected as a parent is proportional to its fitness score. Mutation involves randomly changing 
the structure of candidate expressions by adding, deleting, or modifying mathematical operations or 
functions. This introduces diversity in the population and allows the exploration of new areas in the 
search space. The process of generating new generations of candidate expressions continues until a 
satisfactory model is found, which is typically defined by a pre-specified stopping criterion, such as 
the maximum number of generations or a minimum fitness score. Once a satisfactory model is 
obtained, it can be used to make predictions using new data. 

Table 2 presents the results of the model evaluation using the symbolic regression analyses. The 
training data had an R2 value of 0.64, and the test data had a value of 0.62. The RMSE and MAPE 
for the training data were 0.64 and 27.32, respectively, whereas the corresponding values for the test 
data were 0.72 and 36.27%, respectively.  

The CAI prediction model using symbolic regression is as follows: 

 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑈𝑈𝑈𝑈𝑈𝑈) + (0.014996 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸 + ((𝑅𝑅𝑅𝑅 − 1.97681

∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (−16.0951 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸) ) ∗ 𝐵𝐵𝐵𝐵𝐵𝐵) + 𝑡𝑡𝑡𝑡𝑡𝑡 (0.795238
∗ 𝑅𝑅𝑅𝑅) )) 

(1) 
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where EQC is the equivalent quartz content in %, UCS is the uniaxial compressive strength in MPa, 
BTS is the Brazilian tensile strength in MPa, and RT = 1 for igneous rocks, 2 for sedimentary rocks, 
and 3 for metamorphic rocks. 

Table 2. Model evaluation based on symbolic regression analysis. 

Model Training data Test data 
MAPE(%) RMSE R2 MAPE(%) RMSE R2 

Symbolic 27.32 0.64 0.64 36.72 0.72 0.62 
 

Figure 3 shows the symbolic regression plots for both the training and test sets. 
 

Figure 3. Symbolic regression plot. 

Although the performance of the symbolic regression model was slightly lower than that of KNN or 
other ensemble models based on machine learning, it demonstrated a better prediction ability than 
linear regression analysis models. Therefore, considering the advantage of representing the 
prediction model as a mathematical formula, symbolic regression has potential for practical 
applications.  

5 CONCLUSION 

In this study, a novel approach was proposed using symbolic regression to predict the CAI of rocks, 
which is a widely used method for assessing the abrasiveness of rocks in TBM tunneling. Symbolic 
regression is a powerful technique that can generate mathematical equations that accurately capture 
the relationship between inputs and outputs.  

The proposed symbolic-regression-based CAI prediction model was compared with traditional 
machine-learning-based regression models. Although the performance of the symbolic regression 
model was slightly inferior to that of traditional machine learning-based regression models, its ability 
to provide interpretable mathematical expressions was highlighted. The dataset used in this study 
consisted of 417 observations, including CAIs, rock types, and strength parameters such as UCS and 
BTS, as well as petrographic factors such as EQC. Various machine-learning-based regression 
methods were used in this study to forecast the CAI. The proposed approach has the potential to 
significantly improve the performance of models for predicting rock abrasivity, which can have 
important applications in the design and optimization of underground excavation and TBM tunneling 
operations. 
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