
ABSTRACT: A polymorphic uncertainty model is proposed considering the combined effect of 
aleatory and epistemic uncertainties of rock properties on the stability analysis of rock tunnels. The 
model incorporates fuzzy logic to represent epistemic uncertainties in the Geological Strength Index 
(GSI), transformational uncertainty of empirical models, systematic uncertainties due to discrepancy 
between field and laboratory conditions, and stochastic methods to represent aleatory uncertain 
properties. Further, detailed guidelines are proposed for the characterization and fuzzification of 
epistemic uncertain properties. An extended Convergence-Confinement Method (CCM) is proposed 
and illustrated by performing the stability analysis of a railway tunnel in Jammu and Kashmir, India 
under the framework of combined probabilistic and non-probabilistic methods. Further, the results 
obtained from the developed methodology were systematically compared with those of traditional 
reliability-based results and it was concluded that the proposed methodology is in order with the 
available input parameters having different uncertainty types. 

Keywords: Fuzzy approach; polymorphic uncertainty; probabilistic methods; non-probabilistic 
methods. 

1 INTRODUCTION 

Rock mechanics has always found it difficult and demanding to model uncertainties relating to rock 
characteristics and model parameters. In this discipline, the application of probabilistic analysis 
paired with reliability techniques such as First/Second-Order Reliability Method Point Estimate 
Methods (PEMs), Monte-Carlo Simulation (MCS), etc. (Hoek 1999 and Tiwari & Latha 2017) are 
the most renowned.  

There are primarily two sorts of sources of uncertainty for intact rock and rock mass attributes. 
Aleatory uncertainty (caused by innate variability) and epistemic uncertainty (resulting from a lack 
of knowledge) (Bedi 2014). Systematic uncertainties resulting from variations in the laboratory and 
in-situ conditions and transformational uncertainties associated with the empirical relations are 
subcategories of epistemic uncertainty (Spross 2016 and Tiwari & Latha 2019). Because there is a 
lack of accurate or sufficient rock data, probabilistic approaches cannot accurately represent the 
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uncertainties resulting from many sources. Numerous researchers have employed non-stochastic 
techniques to take into account epistemic uncertainties, such as fuzzy set theory and intervals 
(Alefeld & Mayer 2000; Park et al. 2012). However, accurate uncertainty modelling of structural 
response parameters of rock structure necessitates the complete uncertainty (epistemic + aleatory) 
quantification in intact rock and rock mass properties.  

To the best of the author's knowledge, very few efforts have been undertaken to give a full and 
unified uncertainty framework for calculating combined/polymorphic (epistemic + aleatory) rock 
parameter uncertainty and using the results to analyse the stability of rock structures. 

In this spirit, this paper proposes a polymorphic uncertainty model coupled with a combined 
probabilistic and non-probabilistic framework for accurate uncertainty modelling and safety analysis 
of rock structures. The applicability of the method is demonstrated for a tunnel case study along a 
proposed railway line in Jammu and Kashmir State of India.  

2 DETAILS OF POLYMORPHIC UNCERTAINTY QUANTIFICATION MODELS 

2.1 Polymorphic uncertainty quantification in intact rock properties 

Total uncertainty in intact rock properties is the accumulation of systematic errors (epistemic 
uncertainty) arising from differences between laboratory and in situ conditions due to factors like 
water saturation and sample size etc. and inherent randomness (aleatory uncertainty) (Ang and Tang 
1984). Considering these elements, modified intact rock properties (𝑋𝑋𝑇𝑇) can be calculated as 

 𝑋𝑋𝑇𝑇 = ∏ 𝑁𝑁𝑖𝑖𝑋𝑋𝑋𝑋�𝑛𝑛
𝑖𝑖=1   (1) 

where, 𝑁𝑁𝑖𝑖𝑋𝑋 are the correction factors accounting for systematic uncertainties. 𝑋𝑋� is the estimator of X 
accounting only for the inherent variability. Inherent variability in laboratory measured properties 
can be modelled using probabilistic parameters (mean, standard deviation,PDF). The ratio of the 
values of a rock property under in-situ and standard laboratory testing circumstances is used to 
estimate correction factors (𝑁𝑁𝑖𝑖𝑋𝑋) compensating for systematic errors. Section 4 presents a 
demonstration of measurement and modelling of systematic correction variables related to the effect 
of water saturation and the size of the rock sample for the current issue. 

2.2 Polymorphic uncertainty quantification in rock mass properties 

Total uncertainty in rock mass property is the cumulative uncertainty due polymorphic uncertainty 
in intact rock properties and transformational in GSI-based empirical models used for predicting the 
rock mass property. Transformational correction factors (𝐶𝐶𝑚𝑚) can be approximated as: 

 𝐶𝐶𝑚𝑚 =   𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑇𝑇 𝑝𝑝𝑇𝑇𝑜𝑜𝑝𝑝𝑇𝑇𝑇𝑇𝑜𝑜𝑝𝑝 (𝑋𝑋)𝑇𝑇
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑃𝑃𝑜𝑜𝑇𝑇𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑇𝑇 𝑝𝑝𝑇𝑇𝑜𝑜𝑝𝑝𝑇𝑇𝑇𝑇𝑜𝑜𝑝𝑝 (𝑋𝑋)𝑃𝑃

  (2) 
For the proposed tunnel analysis, transformational uncertainties were needed for the following 
relations: 

2.2.1 Associated with the Hoek-Brown criterion, 𝐶𝐶𝑚𝑚1 

 (𝜎𝜎1 − 𝜎𝜎3)𝑇𝑇 = (𝜎𝜎1 − 𝜎𝜎3)𝑃𝑃 × 𝐶𝐶𝑚𝑚1 = �𝜎𝜎𝑃𝑃𝑖𝑖𝑇𝑇(𝑚𝑚𝑏𝑏
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇

+ 𝑠𝑠𝑏𝑏𝑇𝑇) 0.5� × 𝐶𝐶𝑚𝑚1  (4) 
where, (𝜎𝜎1 − 𝜎𝜎3) and 𝜎𝜎3 are deviatoric and axial stresses obtained from triaxial tests; 𝜎𝜎𝑃𝑃𝑖𝑖𝑇𝑇 is the 
modified uniaxial compressive strength of intact rock (Equation-1); 𝑚𝑚𝑏𝑏 and 𝑠𝑠𝑏𝑏 are Hoek-Brown 
strength parameters of rock mass.  
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2.2.2 Associated with the 𝐺𝐺𝐺𝐺𝐺𝐺 based deformation modulus relation, 𝐶𝐶𝑚𝑚2 

 (𝐸𝐸𝑚𝑚)𝑇𝑇 = (𝐸𝐸𝑚𝑚)𝑃𝑃 × 𝐶𝐶𝑚𝑚2 = �𝐸𝐸𝑖𝑖𝑇𝑇 �0.02 1

1+𝑇𝑇
60−GSI
11

�� × 𝐶𝐶𝑚𝑚2  (5) 

where, 𝐸𝐸𝑖𝑖𝑇𝑇 is modified elastic modulus of intact rock (Equation-1); (𝐸𝐸𝑚𝑚)𝑇𝑇 is modified deformation 
modulus of rock mass. 

2.3 Polymorphic uncertainty quantification in rock-tunnel response parameters 

CCM is a popular analytical method for tunnel stability analysis. Hoek-Brown (1980) have derived 
expressions for the response parameters of the rock tunnel i.e., plastic zone radius ′𝑟𝑟𝑝𝑝′ and the radial 
deformation,′ 𝑑𝑑𝑖𝑖 ′, considering the rock mass as Hoek-Brown material. In this study, we derived 
expressions of response parameters (similar to Hoek-Brown (1980)) using the modified Hoek-Brown 
strength model (Equation 4) considering the transformational correction factor 𝐶𝐶𝑚𝑚1. 

Assuming the tunnel to be a plane-strain axisymmetric problem, and rock mass to be an elastic-
perfectly plastic material, expressions for response parameters of the tunnel of radius ′𝑟𝑟𝑖𝑖′‚were 
derived. Following is a possible calculation order for tunnel response parameters: 

 𝑀𝑀 = 1
2
��𝑚𝑚𝑏𝑏𝐶𝐶𝑚𝑚1

4
�
2

+ 𝑚𝑚𝑏𝑏𝑝𝑝0
𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇

+ 𝑠𝑠𝑏𝑏�
0.5
− 𝑚𝑚𝑏𝑏𝐶𝐶𝑚𝑚1

8
  (6) 

 
𝐺𝐺 = � −𝑚𝑚𝑏𝑏

𝑚𝑚𝑏𝑏+4�
𝑚𝑚𝑏𝑏
𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇

(𝑝𝑝0−𝑀𝑀𝐶𝐶𝑚𝑚1𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇)+𝑠𝑠𝑏𝑏�
0.5�  

 
(7) 

Case 1: If support pressure (𝑝𝑝𝑖𝑖) > critical stress (𝑝𝑝𝑖𝑖𝑃𝑃𝑇𝑇 =  𝑝𝑝0 − 𝜎𝜎𝑃𝑃𝑖𝑖𝐶𝐶𝑚𝑚1𝑀𝑀) 
 𝑃𝑃𝑐𝑐

𝑇𝑇𝑐𝑐
=  (1+𝜈𝜈)

(𝐸𝐸𝑚𝑚)𝑇𝑇
(𝑝𝑝0 − 𝑝𝑝𝑖𝑖)  (8) 

Case 2: If 𝑝𝑝𝑖𝑖 < 𝑝𝑝𝑖𝑖𝑃𝑃𝑇𝑇 
 

𝑟𝑟𝑝𝑝 =  𝑟𝑟𝑖𝑖𝑒𝑒𝑒𝑒𝑝𝑝 �
2

𝐶𝐶𝑚𝑚1
�𝑝𝑝0−𝑀𝑀𝜎𝜎𝑐𝑐𝑐𝑐

𝑇𝑇𝐶𝐶𝑚𝑚1
𝑚𝑚𝑏𝑏𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇

+ 𝑠𝑠𝑏𝑏
(𝑚𝑚𝑏𝑏)2�

0.5
− 2

𝐶𝐶𝑚𝑚1
� 𝑝𝑝𝑐𝑐
𝑚𝑚𝑏𝑏𝜎𝜎𝑐𝑐𝑐𝑐𝑇𝑇

+ 𝑠𝑠𝑏𝑏
(𝑚𝑚𝑏𝑏)2�

0.5
�       

(9) 

                       For 𝑇𝑇𝑝𝑝
𝑇𝑇𝑐𝑐

< √3,    𝑅𝑅 = 2 𝑙𝑙𝑙𝑙 �𝑇𝑇𝑝𝑝
𝑇𝑇𝑐𝑐
�  𝐺𝐺;          For 𝑇𝑇𝑝𝑝

𝑇𝑇𝑐𝑐
> √3,    𝑅𝑅 = 1.1 𝐺𝐺   (10) 

 
𝐴𝐴 = �2 × � (1+𝜈𝜈)

(𝐸𝐸𝑚𝑚)𝑇𝑇 
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2� (1+𝜈𝜈)
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(13) 

where, 𝑝𝑝0 is hydrostatic in-situ stress; 𝜈𝜈 is Poission‘s ratio of rock mass; 𝑚𝑚𝑖𝑖
𝑇𝑇 is modified Hoek-

Brown strength parameter of intact rock that can be obtained from the Equation 1. 

3 COMBINED PROBABILISTIC AND NON-PROBABILISTIC MODELS 

3.1 Fuzzy model and p-box representation of fuzzy model 

Two stages can be used to calculate the fuzzy number’s membership function (𝜇𝜇𝑋𝑋(𝑒𝑒)) (Moller & 
Beer 2004): a) Plot the data as a histogram. b) Find the left and right branches of (𝜇𝜇𝑋𝑋(𝑒𝑒)) by fitting 
the data linearly in such a way that the sum of the squared discrepancies between the actual number 
of sample elements in each bin range and the functional value (𝜇𝜇𝑋𝑋(𝑒𝑒)) in the center of the bin is 
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smallest. This is done while keeping the bin range with the highest frequency in common. 
Additionally, normalise the resulting membership function by setting 𝜇𝜇𝑋𝑋(𝑒𝑒) = 1 to the intersection 
point of the left and right branches of (𝜇𝜇𝑋𝑋(𝑒𝑒)). A non-parametric p-box with the same level of 
information can also be used to represent fuzzy numbers [p, q, r] (Bedi 2014). The methods listed 
below can be used to obtain the pbox's: 
a)- Generate n random probability values 𝑓𝑓𝑖𝑖 : (𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, … ,𝑓𝑓𝑛𝑛) where, 𝑓𝑓𝑖𝑖 ∈ [0, 1]; 𝑖𝑖 = 1,2, … . ,𝑙𝑙 
b)- For lower bound cdf (𝑃𝑃𝑋𝑋), estimate 𝑒𝑒𝑖𝑖 = 𝑈𝑈−1(𝑓𝑓𝑖𝑖 ) where, 𝑈𝑈−1 denotes inverse uniform 
distribution and 𝑒𝑒𝑖𝑖 ∈ [𝑝𝑝, 𝑞𝑞]. 
c)- Similarly, for upper bound cdf (𝑃𝑃�𝑋𝑋), estimate 𝑒𝑒𝑖𝑖 = 𝑈𝑈−1(𝑓𝑓𝑖𝑖 ) where, 𝑒𝑒𝑖𝑖 ∈ [𝑞𝑞, 𝑟𝑟]. 

3.2 Double loop uncertainty propagation model 
 
The double loop uncertainty propagation aims at determining the output boundary distributions 𝑃𝑃𝑌𝑌, 
𝑃𝑃�𝑌𝑌, i.e., the output p-box, propagated from the inputs p-box variables. Steps for performing double 
loop uncertainty propagation are given as follows (Zhang et al. 2010): 
a) Generate m×n standard uniform random probability values 𝑓𝑓𝑖𝑖𝑖𝑖 ; 𝑖𝑖 = 1, 2, . . . ,𝑚𝑚; 𝑗𝑗 = 1, 2, … ,𝑙𝑙; 

𝑓𝑓𝑖𝑖𝑖𝑖 ∈ [0, 1] where m and n are the number of input variables and sample size generated by MCs. 
b) Estimate interval realizations of all input variables Xij corresponding to probability values 

𝑓𝑓𝑖𝑖𝑖𝑖 where, Xij = [𝑃𝑃𝑋𝑋𝑐𝑐
−1(𝑓𝑓𝑖𝑖𝑖𝑖), 𝑃𝑃𝑋𝑋𝑐𝑐

−1
(𝑓𝑓𝑖𝑖𝑖𝑖)]; 𝑖𝑖 = 1, 2, … . ,𝑚𝑚; 𝑗𝑗 = 1, 2, … . ,𝑙𝑙 

c) Estimate the lower and upper bounds of output response parameters by solving the following 
constraint optimization problem: 

  𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝑔𝑔(𝑋𝑋1𝑖𝑖,𝑋𝑋2𝑖𝑖,𝑋𝑋3𝑖𝑖, … ,𝑋𝑋𝑚𝑚𝑗𝑗) ; s.t. 𝑋𝑋𝑖𝑖𝑖𝑖 = [𝑃𝑃𝑋𝑋𝑐𝑐
−1(𝑓𝑓𝑖𝑖𝑖𝑖), 𝑃𝑃𝑋𝑋𝑐𝑐

−1
(𝑓𝑓𝑖𝑖𝑖𝑖)]; 

  𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝑔𝑔(𝑋𝑋1𝑖𝑖,𝑋𝑋2𝑖𝑖,𝑋𝑋3𝑖𝑖, … ,𝑋𝑋𝑚𝑚𝑗𝑗) ; s.t. 𝑋𝑋𝑖𝑖𝑖𝑖 = [𝑃𝑃𝑋𝑋𝑐𝑐
−1(𝑓𝑓𝑖𝑖𝑖𝑖), 𝑃𝑃𝑋𝑋𝑐𝑐

−1
(𝑓𝑓𝑖𝑖𝑖𝑖)]; 

           Where, 𝑅𝑅𝑖𝑖 =  𝑔𝑔(𝑋𝑋1, 𝑋𝑋2,𝑋𝑋3, …, 𝑋𝑋𝑚𝑚) is given response function. 

4 APPLICATION CASE STUDY 

The suggested methodology was used to analyse a hypothetical railway tunnel in Jammu and 
Kashmir, India, in this section. The main reason to select this tunnel was the availability of detailed 
investigation data for a nearby rock slope with similar rock mass conditions. It should be noted that 
the major aim of the study was to demonstrate the analysis procedure and advantages of the proposed 
methodology over traditional methodology. With a radius (𝑟𝑟𝑖𝑖) of 3 metres and an in-situ hydrostatic 
pressure (𝑝𝑝0) of 3.5 MPa, the tunnel was considered to be circular. The surrounding rock mass had a 
Poisson's ratio (𝜈𝜈) of 0.23. Two performance functions (PFs) were employed to evaluate the stability 
of the tunnel (Lü & Low 2011); a) 𝑀𝑀1 = 2 × 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑝𝑝, b) 𝑀𝑀2 = 0.02 × 𝑟𝑟𝑖𝑖 − 𝑑𝑑𝑖𝑖 ; where, 𝑟𝑟𝑝𝑝 is the plastic 
zone radius, 𝑟𝑟𝑖𝑖 is the radius of the tunnel, 𝑑𝑑𝑖𝑖 is the tunnel deformation.  

The statistics and best-fit PDFs for 𝑚𝑚𝑖𝑖, 𝐸𝐸𝑖𝑖 and, 𝜎𝜎𝑃𝑃𝑖𝑖 are shown in Table 1. Figure 1h depicts the 
histogram of the GSI, which was subjectively calculated by experts at the tunnel site. 

Table 1. Statistical parameters and PDFs of intact rock properties. 

Property  Mean Std PDF 
𝒎𝒎𝒊𝒊  12.8 4.08 Weibull 
𝑬𝑬𝒊𝒊  [GPa] 65.7 18.03 Weibull 
𝝈𝝈𝒄𝒄𝒊𝒊  [MPa] 114.5 50.13 Weibull 
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Figure 1. Best fitted linear left and right branches of membership functions on histograms of a) N1
σci b) N1

Ei  
c) N1

mi d) N2
σci e) N2

Ei  f) Cm1 g) Cm2 h) GSI. 
 

 
Figure 2. P-boxes of response parameters a) radial deformation i.e., di b) plastic zone radius i.e., rp. 

 
After a thorough review of the literature, triaxial test data for the rock was acquired for the 
quantification of 𝐶𝐶𝑚𝑚1 (Zhang et al. 2018). The papers Hoek et al. (2019), and Kayabasi et al. (2003) 
provided information on the deformation modulus for 𝐶𝐶𝑚𝑚2. Considering that the entire rock sample 
size (dia > 54mm) was relatively large in the field and the laboratory testing samples were dry and 
small (dia <=54mm), yet there was a chance of saturation owing to rainfall or a rise in the water 
table, systematic correction factors corresponding to water saturation (𝑁𝑁1) and the size of the rock 
(𝑁𝑁2) sample were estimated based on the data obtained from the literatures (Wong et al. 2016; 
Jamshidi 2014; Komurlu 2018). Since these correction factors may differ for various rocks, it is 
preferable to characterise it probabilistically by gathering data for a wide range of rocks as opposed 
to giving a set deterministic number. The collected data was modelled using non-probabilistic 
approaches in consideration of this as well as the lack of precise and enough information. Figure 1 
provides the histograms and corresponding fuzzy membership branches of transformational (𝐶𝐶𝑚𝑚1 
and 𝐶𝐶𝑚𝑚2) and sytematic (𝑁𝑁1

𝜎𝜎𝑐𝑐𝑐𝑐, 𝑁𝑁2
𝜎𝜎𝑐𝑐𝑐𝑐 (for UCS), 𝑁𝑁1

𝐸𝐸𝑐𝑐, 𝑁𝑁2
𝐸𝐸𝑐𝑐 (for elastic modulus) and 𝑁𝑁1

𝑚𝑚𝑐𝑐(for Hoek-
Brown constant) ) correction factors. The resultant fuzzy membership functions were further 
normalised and turned to non-parametric p-boxes. Tunnel stability analysis was performed, and p-
boxes of tunnel response parameters, including plastic zone radius (𝑟𝑟𝑝𝑝) and deformation (𝑑𝑑𝑖𝑖) were 
determined, utilising double loop uncertainty propagation methods and equations described in 
section-2.3. Furthermore, a conventional stability analysis of the rock tunnel was performed, 
discarding systematic errors and transformation model uncertainties (taking, 𝐶𝐶𝑚𝑚1 = 1,𝐶𝐶𝑚𝑚2 = 1) and 
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accounting for the GSI as a probabilistic variable (mean = 41.13; Std = 6.45; PDF- lognormal). 
Figure 2 displays the research's findings after employing both traditional and proposed methods. 

5 CONCLUSION 

An efficient polymorphic uncertainty model coupled with a combined probabilistic and non-
probabilistic framework has been provided for rock tunnel stability analysis. According to the 
current case study, the stability analysis of the tunnel yielded safe (Pf <1%) and unsafe (tunnel 
failure) (Pf > 1%) results, respectively. It was shown that the traditional approaches' underestimating 
of epistemic uncertainty resulted in a 100 % underestimation of the chance of tunnel failure 
concerning 𝒓𝒓𝒑𝒑 and 𝒅𝒅𝒊𝒊. 
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