
ABSTRACT: Human-induced seismicity in underground mining has significant impacts on 
productivity, safety, and operating costs. Accurate predictors for microseismic event sources are 
crucial to minimize disasters such as rockbursts. This study develops machine learning algorithms to 
predict real-time seismic wave velocities in deteriorating underground mines, using data from 
Nazarbayev University's School of Mining and Geosciences laboratory. Traditional constant velocity 
models are imprecise, so the study explores several machine learning models. The best-performing 
model was Gradient Boosted Decision Tree with an MAE of 7.146 m/s. These findings demonstrate 
that machine learning algorithms can accurately predict seismic wave velocities in underground 
mining environments. 
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1 INTRODUCTION 

In the mining industry, rockbursts are frequent and can result in accidents, production loss, and 
financial losses (Feng et al., 2017 and Liu et al., 2019). Microseismic monitoring systems are being 
developed to mitigate the effects of rockbursts by accurately locating the origin of microseismic 
events. The seismic monitoring system needs automated processing for event detection, wave arrival 
time, and event location. A changing mining environment requires a seismic velocity model with an 
anisotropic heterogeneous geological model for accurate event source prediction.  

Deep learning (DL) is increasingly popular for microseismic event source location, due to its 
ability to identify patterns without manual feature engineering. This paper optimizes machine 
learning algorithms for wave velocity prediction in a changing environment using linear regression, 
Deep Neural Networks (DNN), and Gradient Boosted Decision Trees (GBDT). The methodology, 
machine learning models, results, and findings are discussed in detail in the following sections. 
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2 DATA EXPLORATION 

The technique of learning from data in order to quickly identify which data items are of relevance is 
known as data exploration. The raw data should be carefully chosen and cleansed in order to ensure 
credible exploration findings. 

2.1 Initial Data 

A research team at the Nazarbayev University School of Mining and Geosciences laboratory 
produced the raw data for this investigation. On a rock cube with blocks that had holes of various 
diameters, backfilled with various cement/sand ratios, and fractured to mimic various mining 
conditions, the arrival time of the pulse wave generated by one of the sensors as a source was recorded 
by the other sensors during data collection. The School of Engineering and Digital Sciences at the 
same university is where the machine learning application research was conducted. 

The enquired data had 3 different divisions: base (839 readings), G80 Narrow-Band sensors 
cracked (269 readings) and Cracked Cubes SR150M sensors (674 readings) from 8 various sensors 
(where sensor 1 is the source). Overall, initially there were 1782 readings provided. Each sensor 
reading had the parameters as follows: location (x, y, z coordinates), distance from source (in mm), 
velocity, arrival time (in ms), whereas the source had only the location (x, y, z coordinates). 

The dataset from these experiments provided us with the coordinates of the source and the 
receiving sensors, the arrival time at which each of the sensors receives the wave, the quality 
parameters of the backfill that affect the velocity of the wave, as well as the quality of the fractured 
and unfractured cubes in the form of the Rock Mass Rating (RMR) system together with their 
corresponding wave velocities. 

For the block description: 

• The samples of the blocks were made of concrete or granite 
• There were cubes of various sizes with and without holes (in mm): 150, 225, 300, 375, 

and 450 
• Hole diameters in the centre of the cubes varied with cube sizes  
• The holes in the cubes were unfilled and filled with cement and sand at different ratios 

such as 5%, 10%, 15%, 20% cement, dry and wet sand, etc. 
• For each of the cement % content in the hole of the cube, the material in the hole was 

tested at 8 hours, 1 day, 7 days, 14 days, and 28 days  
• Each cube size was also fractured (broken up) using a static cracking agent and tested. 

The fractured cubes were assessed for the block quality using the Rock Mass Rating 
(RMR) system (Bieniawski, 1989). Hence each fractured block had different quality 
depending on the degree of fracturing. 

Some parameters stored mixed values of qualitative and quantitative data. Some parameters had 
missing values. There were duplicate parameters, such as the average value of velocities from all 
sensors for each record separately. There were fields where the values were not applicable. 

2.2 Dataset handling techniques 

Several methods were employed to process the dataset so that it can be fed into the neural networks. 
These techniques improved the overall accuracy of the model by ensuring that the data fed into the 
network was properly pre-processed and free of errors or inconsistencies. This step was critical in 
achieving the desired results and was a crucial factor in the success of the project. 

One-hot encoding: The qualitative data were isolated from the numerical values as independent 
parameters to standardize the dataset. Each qualitative value then became a separate parameter with 
a binary value of either 0 or 1 (present or absent). For instance, the cement content parameter included 
percentages of the cement content as well as varieties of content, such as no hole, no backfill in the 
hole, dry sand, water-saturated sand, and wet sand, all of which were stored in a single column. As a 
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result, new parameters for the content types (in Boolean data types) were separately established, and 
the column of cement content was reduced to the original percentages and qualitative data, which 
were both replaced with 0 in case there was no cement content. 

Handling missing values: We have substituted any missing values in the dataset with the mean 
of the corresponding field. The mean value of all the other applied backfill strength values with the 
same curing time was used to fill in the missing data, such as when not all records contained 
information regarding the backfill strength (MPa). For instance, it is preferable to enter the average 
of known samples of 7-days-cured backfill if a value for the backfill is absent. 

Handling recurring parameters: The dataset we were given was extremely detailed, and the 
School of Mining and Geosciences team made every effort to provide as much information about the 
experiments as possible. However, from the perspective of machine learning, some details were 
overlapping, so we sorted or removed some parameters to make the training process steadier. For 
instance, the raw data featured a unique parameter referred to as "qualitative data" that provided the 
block description, including the size of the block, the type of backfill, and whether the block had a 
hole in it. The summary field was eliminated since it was unnecessary because we already have these 
parameters as separate fields. 

After the dataset cleaning, for each channel (sensors, except for the source) the dataset consisted 
of 23 different parameters and the source sensor consisted of 17 different parameters (we have 
generated 8 different documents for each sensor separately). The number of readings after the data 
cleaning for all the sensors was 1365 readings overall. 

3 MACHINE LEARNING METHODS 

This study improves upon previous research in Maksut et al. (2022) by using various machine 
learning techniques, including Linear Regression, Neural Networks, and Decision Trees, to predict 
velocity. The study includes new neural network models and a new Decision Tree approach, as well 
as individual velocity predictions for 7 sensors to assess accuracy and reliability. The models predict 
the dependent variable using independent variables and employ different techniques. Due to space 
restrictions, the study only briefly explains the machine learning models used. 

Linear Regression uses a linear model to predict the dependent variable based on independent 
features. The model aims to minimize the difference between the predicted and actual values. Linear 
Regression is simple to implement, interpretable, and scalable. It was applied to predict velocity in 
our research using 22 concrete blocks and wave arrival parameters from 7 different sensors. 

Neural networks, also known as Artificial Neural Networks (ANN), simulate the functioning of 
human neurons by transmitting signals with assigned weights. Deep learning relies on these 
networks, which can uncover complex correlations and patterns among features. In our research, we 
built various neural networks with different numbers of hidden layers and neurons per layer, using 
the rectified linear unit (ReLU) function as the activation function. We tested 12 different neural 
network configurations with different numbers of hidden layers and neuron amount at each layer. 

Decision Trees (DTs), including Random Forest and Gradient Boosted DT, are used in this study 
due to their prediction accuracy and efficiency. DTs model the decision-making process, but may 
overfit to the data. Random Forest combines multiple decision trees for collective intelligence but 
sacrifices interpretability and speed. Gradient Boosted DT builds trees in succession to address 
shortcomings and minimize loss. 

4 DATA ANALYSIS AND FINDINGS 

The combined distributions of material condition parameters and velocity indicate that their 
dependence is non-linear. However, some parameters exhibit a linear relationship in their joint 
distribution diagrams. For example, there is a strong linear correlation between block size and hole 
diameter. Additionally, the value ranges for each function are too varied. This diversity can cause 
instability while training machine learning models, which is addressed by the normalization 
technique outlined in Section 1. 
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The variables utilized for training the models are listed in Table 1. It's worth mentioning that the 
sensor coordinates, distance to source, and arrival time parameters vary based on the sensor 
(channel), resulting in 7 datasets for each sensor numbered from #2 to #8. The channel #1 is the 
source channel. However, the other parameters are consistent across all datasets. 

Table 1. Variables used in training the models. 

Variable  Description 
Sample [-] The type of the experimental cube (concrete or granite) 
Block size [mm] The cube side length 
RMR [-] Rock mass rating, the fractured block quality 
Hole [-] Boolean value that represents the presence of the hole in 

the cube 
Hole Diameter [mm] The diameter of the cylindrical hole in the cube 
Cement Content [%] Percentage of the cement mixture in the hole 
Curing time [ms] The time elapsed after the hole was filled 
Backfill strength [MPa] Backfill material quality 
Source coordinates [m, m, m] Source coordinates in 3d space 
Sensor coordinates [m, m, m] Sensor coordinates in 3d space 
Arrival time [ms] The time at which the sensor captures the wave 
Distance to source [m] The distance from the sensor to the source 

4.1 Results 

In this work, we improved upon the study presented in Maksut et al. (2022) by introducing new 
models for neural network-based algorithms and applying a new Decision Tree approach. 
Additionally, we decided to predict velocity for each sensor individually to see if it would improve 
accuracy in comparison with the previous study and identify which sensors may be unreliable. To 
evaluate the accuracy of the models, we used the Mean Absolute Error (MAE) metric as represented 
in Equation 1. From each algorithm, the best implementation was selected, and its performance is 
illustrated in Table 2. In Maksut et al. (2022), the best accuracy achieved was 34.770 m/s, but we 
were able to improve that accuracy to 7.146 m/s for sensor #2. The accuracy of the models is 
determined to be high, as the error is found to be distant to the mean of all velocity records, which is 
1615.386 m/s. 

MAE =
∑ |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝐷𝐷
𝑖𝑖=1

𝑛𝑛
 (1) 

Table 2. The testing losses of the best models from each Machine Learning algorithm. 

Model  #2 #3 #4 #5 #6 #7 #8 
Linear 
Regression 

m/s 618.247 591.091 624.403 478.432 628.081 674.038 673.995 

DNN_6_128 m/s 22.017 20.464 29.456 42.989 26.952 27.876 21.394 
GBDT m/s 9.740 7.146 13.500 7.323 7.971 10.251 12.331 

 
Figure 1 demonstrates the effectiveness of the models in predicting unseen data. The graphs compare 
the actual and predicted values for new records, with the ideal being that they are equal and lie on 
the line shown on the graph. The closer the points are to the line, the higher the accuracy of the model 
on the new data. The data in Figure 1 is reinforced by Table 2, which shows that the Gradient Boosted 
Decision Tree provides the best prediction among all the other models. 
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Figure 1. The testing accuracies of the models on the data based on channel #2. 

5 SOFTWARE ARCHITECTURE 

The Neural Network (Velocity Predictor) takes as input block conditions and sensor data and outputs 
the predicted wave propagation velocity. This velocity is then passed to the MAE Evaluation, which 
assesses the accuracy of the velocity prediction using the Mean Absolute Error. Finally, the velocity 
is used in the Seismic Event Location Calculator to determine the location of the seismic event. The 
model flow chart is presented in Figure 2. 

 
Figure 2. Software architecture for the proposed model. 

The neural network architecture for this task consists of an input layer that takes in block condition 
and sensor data as inputs. These data are then processed through several hidden layers, which use 
activation functions to transform the inputs into outputs that capture the complex relationships 
between the inputs and the target wave propagation velocity. The number of hidden layers and the 
number of neurons in each layer is adjusted to optimize the performance of the model. The final layer 
of the network is the output layer, which produces the predicted wave propagation velocity. 
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The MAE measures the average absolute difference between the actual wave propagation velocity 
and the predicted velocity. The lower the MAE, the more accurate the predictions of the neural 
network. 

6 CONCLUSION 

In this research, we aimed to tackle the challenge of predicting the dynamic velocity in a changing 
mine environment using laboratory data. Our main contribution is the development of an optimized 
machine learning algorithm for this task. We evaluated various models, including decision trees, and 
found that the Gradient Boosted Decision Tree model performed best with an error of 9.740 m/s. 
This small error is important for accurately tracking the velocity in a constantly changing mining 
environment. However, there is room for further improvement by exploring other non-linear 
algorithms, decision trees and new data handling techniques. Additionally, other deep learning 
models such as CNNs and RNNs could be tested in the future. 
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