
ABSTRACT: The drill and blast tunneling method applies to various rock mass conditions and is 
widely used in underground construction. Optimization of drill and blast requires careful planning 
and currently depends on the engineers’ ability to execute the art of blasting. Intelligent analysis of 
measurement while drilling (MWD) data from blast holes can be used for process optimizations, 
responsible resource utilization, and risk minimization. For example, an Artificial Intelligence (AI) 
-based decision support system (DSS) can suggest the volume and content of explosive material. 
However, to develop a reliable and trustworthy DSS, one needs to understand the relation between 
MWD data logs and the underlying lithology conditions, like composition or type of rock mass. 
This work provides an overview of the most common methods for MWD data analysis. Selected 
methods are then utilized to develop predictive machine-learning (ML) models, which are further 
validated with available MWD data. 
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1 INTRODUCTION 

To characterize or quantify the rock mass in advance, data recorded during drilling (measurement 
while drilling, or MWD) can be combined with information from in situ measures (e.g., face 
mappings, geophysical measurements) and/or project documents (e.g., laboratory test results, 
primary stress estimations). Data Science methods can explore resulting datasets to deliver accurate 
predicting models. The outputs from predictive models can be used to provide decision support on 
the required volume of explosive material for the blasting round. Automated evaluation of MWD 
data would allow optimization of the economic components of the construction project and help to 
enhance safety during construction.  

Developing a pipeline for processing MWD data and pinning applicable methods for building a 
robust data-driven model that can predict rock mass conditions is critical for Industry 4.0 and is 
attracting the attention of experts from both research and industry. This work briefly reviews 
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analytical methods useful for MWD data mining and provides methods’ assessment performed by 
authors. We also compared various MWD data preprocessing techniques. A correlation analysis of 
MWD data combined with clustering was used to detect outliers. Such data was then excluded from 
training datasets to improve the accuracy of the predictive models. 

2 MWD DATA ANALYSIS: A REVIEW OF METHODS 

The review below summarizes the approaches based on statistical ML methods used for MWD data 
analysis. The statistical methods for the MWD data analysis can be divided into unsupervised (e.g., 
K-means clustering, principal component analysis (PCA)) and supervised (e.g., regression analysis) 
methods. 

Unsupervised methods are used to group a dataset into several subsets based on patterns obtained 
only from the data itself, without any provided labels. The patterns can be based on, e.g., similarity 
(i.e., how close the data instances are to each other located in a multidimensional feature space). 

The PCA seems to be the most applied method for MWD data analysis (Qiu, Yang & Shi, 2022): 
it aims to reduce the data attributes to a smaller (and therefore more manageable) number of 
components (or variables) by obtaining the most significant parameters for the variations.  

The disadvantage of PCA is its sensitivity to data preprocessing, specifically data normalization. 
Since the method is sensitive to the variation of the data, it will return inaccurate results for non-
normalized inputs. That creates a possible constraint for applying this method in production, where 
the non-zero probability exists to obtain a data stream with values exceeding observed previously 
max or min values used for normalization. Another disadvantage of PCA is its “non-interpretability”: 
the inability to assign a physical interpretation to the individual principal components at the lower 
dimensional feature space.  

The advantage of the PCA is its robustness toward noise (errors) in data (since the reduction in 
data implies a reduction in the noise).  

The outputs from the PCA method have been successfully used to train ML models, like 
regression, alone or in combination with other variables. PCA also has been applied to investigate 
the correlation between the MWD variables by Schunnesson (Schunnesson, 1998). In this work, PCA 
was applied to investigate the correlation between the penetration rate and torque pressure. He 
concludes that the penetration rate and torque pressure are generally good in indicating rock hardness 
and can be used to detect discontinuities: both variables increase when encountering discontinuities.  

In general, to check whether the PCA is beneficial for the MWD dataset at hand, the most common 
approach is to look at the percentages of variance accounted for by the PCA.  

K-means clustering is another unsupervised method often used for MWD data analysis. K-means 
requires the number (K) of clusters to be defined a priori so that the random initial centers of the K 
clusters can be generated in the data space. Then Euclidean distances are calculated between centers 
to allocate points to the nearest centroids based on the shortest distances. The advantage of the K-
means clustering is its simple and “transparent” interpretation (compared to, e.g., PCA) of the 
outputs. The major disadvantage of this method is the dependence of the results on the correct guess 
of the number of clusters. To overcome this, the Calinski-Harabasz criterion (Calinski & Harabasz, 
1974), also known as a variance ratio criterion (VRC), is often recommended to assess the number 
of clusters: between-cluster variance shall be greater than the within-cluster variance. VCR is a trial-
and-error approach; therefore, it is time-consuming and cannot guarantee the discovery of the global 
optimal solution. 

The fast performance of K-means clustering is reported as one of the advantages. However, it is 
worth mentioning that, like any other distance-based method, K-means clustering isn’t capable of 
handling large datasets by itself. Instead, it requires other models (like MapReduce) to manipulate 
large datasets. To ensure accurate results, it is also important to explore the underlying data 
distribution before applying K-means clustering because the method won’t resolve irregularly shaped 
or sized clusters. The outputs from the K-means clustering can be used as input for training the ML 
models. A more common use, however, is to utilize the K-means model, pre-trained on existing data, 
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to assign new incoming MWD data to one of the pre-defined clusters and use backtracking to assign 
physical meaning to the clusters. 

Supervised methods are used to find a relationship between independent variables (inputs) and 
the dependent variable(s), also called output(s), by looking for a (general) mapping function. 
Classification (logistic regression) and regression (linear regression) is the most often used terms in 
supervised learning for predictive modeling. The primary advantage of supervised methods is the 
interpretability of the results, provided that the right metrics are selected.  

Logistic regression methods have no assumption on the linearity of the relationship between 
inputs and outputs and are especially useful when it is necessary to tackle dependent categorical 
variables. However, the downside of logistic regression is its sensitivity to collinearity (correlation 
between inputs) and the necessity to have outputs in a binary format. 

For continuous outputs, the multiple linear or random forest regression methods can be applied 
for MWD data analysis. Both multiple linear regression (MLR) and random forest regression (RFR) 
account for possible correlations between variables that arise from cause-and-effect relationships. 
Due to that, the accuracy of these two methods was reported to be generally higher.  

Supervised methods applied for detecting fractures with an aperture larger than 1 cm and soft or 
no infill (Hosmer, et al., 2013) reportedly were able to predict the open fractures with a maximum 
shift in a location in 4-6 cm when the inputs were correctly selected. That brings to light a major 
disadvantage of supervised methods: the input pruning is critical for the accuracy of the results. The 
number of samples and the balance of classes in the inputs are critical for obtaining accurate results 
from the supervised methods. The data imbalance between the events of different matter, 
significance, and nature in the dataset is a serious problem that shall be tackled during the data 
preprocessing. 

In this work, RFR models were used due to their transparency for the feature importance.  

3 METHODS ASSESSMENT 

This section provides an overview of our results by applying unsupervised and supervised methods 
for MWD data analysis. The raw data parsing and cleaning (removing duplicates, fixing missed data, 
and necessary data sorting) was carried out in advance and is not a part of this work. Data 
preprocessing included time averaging, correlation analysis, and data normalization.  

Due to the multivariate nature of the MWD data, it was necessary to analyze the relationship 
between different parameters and relate these to the target values (e.g., the volume of explosive 
materials). The correlation analysis is a valuable method for discovering and quantifying the degree 
to which variables depend on each other, detecting possible constraints for applying supervised 
methods. The correlation matrices of MWD variables were constructed for randomly selected 
boreholes. The correlation matrices were further post-processed, and the lower triangle of each 
matrix (see Figure 1) was extracted and transformed into a row of correlation coefficients describing 
pair-vise correlations between all variables. Thus, a “correlation dataset” with columns formed from 
the pairs of the correlation coefficients was constructed. The correlation dataset, alone or in 
combination with the original MWD variables, and their statistical values, like mean, median, 25, 
50, and 75 percentiles for each borehole, were further used in data analysis. 

Several predictive models were developed to predict the optimal volume of explosive materials. 
Models used various sets of inputs: raw MWD data, outputs from PCA of the MWD data, and 
correlation coefficients. All models use the RFR to predict the total volume of explosive material per 
m3 of the excavation for one section. 

Results from the PCA for input MWD variables are shown in Figure 2. The visualization shows 
a good separation between the two classes based on the volume of explosives used for the section, 
but only where the volumes of explosives are well separated. 
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Figure 1. The correlation matrix with the Spearman correlation coefficients between drilling variables was 

calculated using the Seaborn library (Waskom, M. L., 2021). The matrix's lower half (in red) was 
transformed into a row of correlation coefficients for each borehole. 

 

Figure 2. Results of PCA for a single section with good separation between two classes of target variable 
(volume of the explosives). For better resolution only first three PC are shown (resolving > 67% of variance). 

Colours are corresponding to the total volume of explosives per m3 of the excavation. 

A sensitivity analysis was performed, and the importance of input variables was queried before 
training RFR model. Table 1 shows the accuracy and RMSE for eight models trained on different 
inputs.  

Table 1. Summary of the regression model’s accuracy for predicting the volume of explosive materials based 
on MWD data and its derivatives. Accuracy = 100% - MAPE (mean absolute percentage error). 

Input variables RMSE, 
kg/m3 

Accuracy, 
% 

Raw MWD data 0.05 86.6 
PCA outputs for raw MWD data 0.09 77.9 
Raw MWD data + outputs from PCA 0.06 85.7 
Time-averaged MWD data (per borehole)  0.05 88.8 
PCA outputs for averaged MWD data 0.08 78.9 
Averaged MWD data + outputs from PCA 0.03 92.5 
Outputs from the correlation analysis 0.05 87.9 
Averaged MWD data + outputs from the correlation analysis 0.03 92.6 
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4 CONCLUSIONS 

The results from PCA and correlation analysis are further used as additional input variables in some 
of the RFR models. The highest accuracy was achieved by models where inputs comprised averaged 
(per borehole) MWD variables and outputs from either PCA or correlation analysis. The pruning of 
inputs was performed using the feature importance reports from the RFR models. 
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