
ABSTRACT: An extensive direct shear test program has been conducted on regular saw-tooth 
artificial joint samples under constant normal load (CNL) conditions. The analysis of shear data 
reveals that shear stiffness (𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ) and dilation (𝜓𝜓 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ), where 𝑑𝑑 and 𝑑𝑑 are the shear 
stress and vertical displacement respectively, are not constants throughout the evolution of shear 
stress. Rather, it is clear that both the variables change non-linearly with shear displacements (𝑑𝑑) and 
can be approximated by two-parameter hyperbolic function with respect to 𝑑𝑑. These parameters are 
estimated using regression analysis using the experimental data. From the functions 𝑘𝑘𝑠𝑠𝑠𝑠(𝑑𝑑) and 
𝜓𝜓(𝑑𝑑), a shear displacement exists at which the basic friction angle occurs. Also, it is found that this 
displacement occurs where contraction ends and dilation begins. Based on that, the dilatant behavior 
and evolution of peak shear strength can be described leading up to the determination of dilation 
angle at the peak stress. 
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1 INTRODUCTION 

Joint can be defined as a line of break from geological formation along which there is no observable 
deformation (Muralha et al., 2014). In most of the literature, for regular saw-tooth shaped artificial 
samples under CNL boundary condition, shear behavior is mostly characterized by peak shear 
strength which depends on the normal load and dilation angle for a given basic friction angle (Budi 
et al., 2014; Haberfield & Johnston, 1994; Ladanyi & Archambault, 1969; Yang & Chiang, 2000; 
Zhu et al., 2019). A few studies have been conducted to understand the evolution of the mobilized 
friction angle while shearing, i.e. with shear displacement (Hoek & Brown, 1997; Barton, Bandis & 
Bakhtar, 1985; Bai et al., 2010). In other words, understanding the development of shear resistance 
of a joint surface with shear displacement may reveal the dilatant behavior as well as the variation of 
shear stiffness. In most of the applications, shear stiffness and dilation are considered to be the 
constant throughout the evolution of shear stress until the peak strength. From laboratory experiment 
results, it is clear that they are not constant rather vary nonlinearly with shear displacements even at 
the initial stages of loading. Therefore, from the relationships between shear stiffness/dilation angle 
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and shear displacement, it may be possible to develop models of the peak shear strength and 
mobilized friction angle depending on shear displacement. 

In order to investigate these phenomena and to develop relationships between shear 
stiffness/dilation with shear displacement, an extensive laboratory experiments on regular saw-tooth 
shaped artificial samples under CNL boundary condition are conducted in this paper. Several 
researchers have conducted studies on regular saw-tooth joint sample keeping the equal base length 
with certain asperity angle generally below 300 (Shrivastava & Rao, 2011; Li et al., 2014; Bahaaddini 
et al., 2016; Niktabar et al., 2016, 2017). From the above and vast literature, it is found that there 
exist research gaps on shear behavior of regular saw-tooth joint samples having variable base lengths 
i.e. varying the number of asperities in terms of developing a model of mobilized friction angle with 
respect to shear displacement. This paper mainly focused on CNL tests of regular saw tooth samples 
made of cement mortar for developing mathematical models of shear stiffness and dilation with 
respect to shear displacement and is discussed below. 

2 EXPERIMENTAL STUDY AND RESULTS 

The experimental work is carried out on cement mortar sample blocks of length 100 mm, width 100 
mm and height 100 mm. The angle of regular saw-tooth asperities varied as 00, 100 and 200. A total 
of 70 tests was carried out under this study. Five normal stresses 0.303 MPa, 0.491 MPa, 0.679 MPa, 
0.867 MPa and 1.055 MPa are defined as low normal stresses considering the criteria of 40 <
𝜎𝜎𝑐𝑐 𝜎𝜎𝑛𝑛⁄ ≤ 200. The other hand five normal stresses 1.252 MPa, 2.183 MPa, 3.123 MPa, 4.063 MPa 
and 5.003 MPa are considered to be high normal stresses belonging to 1 ≤ 𝜎𝜎𝑐𝑐 𝜎𝜎𝑛𝑛⁄ ≤ 40. Here, 𝜎𝜎𝑐𝑐 = 
44.67 MPa denotes the uniaxial compressive strength of the sample. For non-zero asperity samples, 
single (S), double (D) and quadruple (Q) asperities in a single sample are prepared by varying the 
base length of asperities. An automated 500 kN capacity servo-controlled direct shear machine with 
continuous data acquisition system is used for conducting all the CNL shear tests. 

2.1 Shear behavior of 00, 100 and 200 regular saw-tooth samples 

The reference samples having asperity angle, 𝑖𝑖 = 00 exhibit increasing peak shear strength with 
normal stresses. Dilation angles remain near zero degree for all cases of normal stresses. Table 1 
shows the peak shear strength versus normal stress data. The basic friction angles (𝜙𝜙𝑏𝑏) is found to 
be 38.20. The joint roughness coefficient (JRC) of all sets of surfaces are determined from Barton’s 
envelop (Barton, 1973;,Barton and Choubey, 1977) and also given in the Table 1. Figures 1(a), (b) 
and (c) plot the shear stress and vertical displacement versus shear displacement curves for 3 different  

   
(a) Samples 100 –Single (b) Samples 100 –Double (c) Samples 100 –Quadruple 

Figure 1. Shear stress and vertical displacement plots for representative 100 samples. 
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normal stresses viz. 0.679 MPa, 2.183 MPa and 5.003 MPa for single, double and quadruple samples 
having asperity angle 100 respectively. Note that these plots represent the trend of shear resistance 
provided by 100 asperity samples for the given normal stresses and the similar trend are observed for 
the rest of the normal stresses. The peak shear strengths are estimated for all the test results and are 
listed in Table 1. Figure 2(a) depicts the plots between peak shear strength versus normal stress and 
shows pseudo-linear relationship. 

The key highlights of these results are (i) if 𝜎𝜎𝑛𝑛 > 0.6 MPa, a well-defined contraction zone occurs 
before the upper block shows dilatant behaviour, (ii) the contraction zone (𝑑𝑑 < 0 until 𝜓𝜓 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ =
0) is the manifestation of firm contact of the two blocks, and (iii) shear stiffness, 𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  is 
high at the beginning of the shearing process and gradually reduces with increasing shear 
displacement. The key highlights of 200 samples are (i) dilatant behavior is more prominent as 
compared to 100 samples, (ii) there is no significant improvement of shear strength from 100 samples, 
and (iii) several 200 single asperity samples show wavy nature of shear stiffness (𝑘𝑘𝑠𝑠𝑠𝑠) with shear 
displacement (𝑑𝑑). 

Table 1. Peak shear strength of 00, 100 and 200 samples (all values are in MPa). 

Normal 
Stress 
(MPa) 

Plane 𝑑𝑑𝑝𝑝 (Single) 𝑑𝑑𝑝𝑝 (Double) 𝑑𝑑𝑝𝑝 (Quadruple) 

00 100 

(JRC=10.08) 
200 

(JRC =8.76) 
100 

(JRC =8.66) 
200 

(JRC =15.10) 
100 

(JRC =14.46) 
200 

(JRC =11.60) 
0.303 0.152 0.107 0.061 0.115 0.122 0.041 0.064 
0.491 0.219 0.425 0.332 0.302 0.471 0.194 0.324 
0.679 0.495 0.638 0.740 0.592 0.828 0.443 0.864 
0.867 0.579 0.843 1.080 0.773 1.215 0.737 0.971 
1.055 0.757 1.134 1.480 0.974 1.471 0.941 1.262 
1.252 1.039 1.712 2.016 1.329 2.170 1.637 1.888 
2.183 1.801 2.667 3.604 2.291 3.594 2.507 2.712 
3.123 2.511 3.859 5.339 3.608 5.092 3.637 4.100 
4.063 3.059 4.983 6.627 4.604 5.762 4.647 5.114 
5.003 4.016 5.810 7.003 5.990 6.883 5.684 6.462 

2.2 General behavior of shear stress versus shear displacement curves 

From the majority of 𝑑𝑑 − 𝑑𝑑 curves for 100 and 200 asperity samples with different normal stresses, it 
is quite evident that 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝜓𝜓 are not constants for the range of shearing domain (0 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑝𝑝), 
where 𝑑𝑑𝑝𝑝 = shear displacement at peak shear strength as shown using an example in Figure 2(b). The  

           
             Figure 2. (a) Relationship between 𝑑𝑑𝑝𝑝 and 𝜎𝜎𝑛𝑛               (b) Yield shear stress, 𝑑𝑑𝑦𝑦 occurs at 𝜓𝜓 = 0 
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shear stiffness is relatively high ranging over 20.0 MPa/mm. This signifies that the initial resistance 
provided by the sample is significant. However, once 𝑑𝑑 is reached the yielding limit (𝑑𝑑𝑦𝑦), the initial 
high resistance is lost and the shear stiffness drops significantly. Finally, it reaches to the peak shear 
stress 𝑑𝑑𝑝𝑝 at 𝑑𝑑𝑝𝑝 generally ranging between 1 and 2 mm. Another significant observation is that the 
vertical movement of upper block (𝑑𝑑) is downward or negative causing contraction, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ < 0, 
until 𝑑𝑑 ≈ 𝑑𝑑𝑦𝑦 (bottom graph of Figure 2(b)). Mostly, the sample dilates or 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ > 0, once 𝑑𝑑 > 𝑑𝑑𝑦𝑦. 
In all cases, it is found that dilation starts after yield stress (𝑑𝑑𝑦𝑦) is reached.  

2.3 Mathematical models of mobilized shear stiffness and dilation 

A computer program is written to estimate both 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝜓𝜓 as shown by representative samples in 
Figures 3(a) and (b) respectively. It can be clearly seen that 𝑘𝑘𝑠𝑠𝑠𝑠 values are very high ranging from 
4.0 MPa/mm to 20.0 MPa/mm at the initial stage of loading signifying high frictional resistance at 
the joint surface. However, as 𝑑𝑑 approaches to 𝑑𝑑𝑝𝑝, 𝑘𝑘𝑠𝑠𝑠𝑠 drops drastically signifying the loss of shear 
resistance.  

On the contrary, the initial value of 𝜓𝜓 is close to -0.5 to -0.8 mm/mm and can be as low as -1.0 
mm/mm. However, it increases rapidly with 𝑑𝑑 and crosses the 0 mark close to 𝑑𝑑 ≈  𝑑𝑑𝑦𝑦. This ends 
the contraction period and marks as the beginning of dilation. Hence, for 𝑑𝑑𝑦𝑦 ≤ 𝑑𝑑 ≤  𝑑𝑑𝑝𝑝, the evolution 
of shear stress is mainly dominated by the dilatant behaviour of the samples. In these samples, the 
maximum positive 𝜓𝜓 is found to be around 0.15 to 0.2 mm/mm.  

         
Figure 3. (a): Relationship between 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝑑𝑑        (b): Relationship between ψ and 𝑑𝑑. 

From the above relationships, until 𝑑𝑑 ≤  𝑑𝑑𝑝𝑝, 𝑘𝑘𝑠𝑠𝑠𝑠 can be expressed using two-parameters hyperbolic 
function as 

 𝑘𝑘𝑠𝑠𝑠𝑠 =
𝑎𝑎

𝑑𝑑 − 𝑏𝑏
 (1) 

Where 𝑎𝑎 and 𝑏𝑏 are the constants to be determined from the 𝑘𝑘𝑠𝑠𝑠𝑠 − 𝑑𝑑 curve. The constant 𝑎𝑎 may have 
a direct relation with 𝑘𝑘𝑠𝑠𝑠𝑠 and hence it reduces with the decreasing 𝜎𝜎𝑛𝑛. The constant 𝑏𝑏 is an offset 
parameter to 𝑑𝑑 and the value of 𝑘𝑘𝑠𝑠𝑠𝑠 is sensitive to this parameter. Once the constants 𝑎𝑎 and 𝑏𝑏 are 
known, shear stress at any 𝑑𝑑 ≤  𝑑𝑑𝑝𝑝 can be determined from the following equation as  

 𝑑𝑑 = 𝑎𝑎 ln �1 − 𝑢𝑢
𝑏𝑏
�,        𝑑𝑑 ≤ 𝑑𝑑𝑝𝑝 (2) 

The trend of 𝜓𝜓 with 𝑑𝑑 is also found to be hyperbolic but in this case it increases with increasing 𝑑𝑑. 
Again, since 𝜓𝜓 ranges from negative to positive value, a parameter 𝜓𝜓0 taken as the maximum value 
of 𝜓𝜓, is subtracted from the measured data and the regression analysis is performed. Therefore, the 
relationship resembles a hyperbolic function of the following form: 

 𝜓𝜓 =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜓𝜓0 +
𝑐𝑐

𝑑𝑑 − 𝑑𝑑
 (3) 
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Where the constants 𝑐𝑐 and 𝑑𝑑 are to be determined by regression analysis. From equation 3, we can 
find that 

 𝑑𝑑 = 𝜓𝜓0𝑑𝑑 +  𝑐𝑐 ln �1 − 𝑢𝑢
𝑑𝑑
� and 𝑑𝑑(𝜓𝜓 = 0) = 𝑑𝑑 − 𝑐𝑐

𝜓𝜓0
  (4) 

2.4 Mobilized friction angle and dilation angle at peak strength 

Based on the relationship mentioned in equations 2 and 3, 𝑑𝑑𝑦𝑦 can be estimated as 

 𝑑𝑑𝑦𝑦 =  𝑑𝑑�𝑑𝑑𝑦𝑦� = 𝜎𝜎𝑛𝑛 tan�𝜙𝜙𝑦𝑦� (5) 

Where 𝜙𝜙𝑦𝑦 is the friction angle mobilized at 𝑑𝑑 = 𝑑𝑑𝑦𝑦 or 𝑑𝑑 at 𝜓𝜓 =  0. Figure 4(a) plots 𝑑𝑑𝑦𝑦 versus 𝜎𝜎𝑛𝑛 
for the representative samples comprising 100-S, 100-D and 100-Q, and 200-D and 200-Q samples. It 
is found that in the average sense, the friction angle at 𝑑𝑑 = 𝑑𝑑𝑦𝑦 or 𝑑𝑑 at 𝜓𝜓 =  0, is about 370, which is 
very close to 𝜙𝜙𝑏𝑏 of 380. The range of 𝜙𝜙𝑦𝑦 may vary from 24 to 47 degrees based on the different 
values of 𝜎𝜎𝑛𝑛. This result reveals an interesting hypothesis that in the average sense, the mobilized 
friction angle at the yielding shear displacement, i.e at 𝑑𝑑𝑦𝑦 or 𝑑𝑑 at 𝜓𝜓 =  0, represents the basic friction 
angle. Similarly, the peak shear stress can be expressed as 

 𝑑𝑑𝑝𝑝 =  𝑑𝑑�𝑑𝑑𝑝𝑝� = 𝜎𝜎𝑛𝑛 tan�𝜙𝜙𝑦𝑦 + 𝜙𝜙𝑑𝑑� (6) 

Where 𝜙𝜙𝑑𝑑 is the additional angle mobilized due to dilatant behaviour of joint surface beyond 𝜓𝜓 =
 0. Needless to say, 𝜙𝜙𝑑𝑑 is dependent on 𝜎𝜎𝑛𝑛 and for higher value of 𝜎𝜎𝑛𝑛, it may be completely 
suppressed. The mobilized dilation angle at the peak stress is then computed as 

 tan𝜙𝜙𝑑𝑑 = �
𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑦𝑦

𝜎𝜎𝑛𝑛 + (𝑑𝑑𝑝𝑝𝑑𝑑𝑦𝑦/𝜎𝜎𝑛𝑛)�
 (7) 

Figure 4(b) plots the dilation angle with 𝜎𝜎𝑐𝑐/𝜎𝜎𝑛𝑛. For 100-S, 100-D and 100-Q samples, it is quite 
evident that dilation angle decreases with increasing 𝜎𝜎𝑛𝑛. However, for other samples, it shows that 
the dilation angle may be over 250 for 𝜎𝜎𝑐𝑐/𝜎𝜎𝑛𝑛 < 20. This implies that if the asperity angle is high (200 
in this case) dilation may occur irrespective of the value of normal stress. 

                  
    Figure 4. (a) Friction angle at 𝑑𝑑𝑦𝑦 or 𝜓𝜓 = 0         (b) Relationship between dilation angle and 𝜎𝜎𝑐𝑐/𝜎𝜎𝑛𝑛. 

3 CONCLUSION 

For regular saw-tooth samples, peak shear strength decreases by 2% to 60% from single to multiple 
asperity samples for asperity angle of 100 angle for low normal stress. For 200 asperity angle samples, 
the above decrease is less (2% to 25%). The average decrease in peak strength from 100-S samples 
to 100-D and 100-Q samples are 5% and 9% respectively, if the applied normal stress is high. 
However, for 200 asperities the average decrease in peak shear strength are found to be 2% and 17% 
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respectively for the same normal stresses. One of the objectives of this work is to investigate that 
both shear stiffness and dilation are not constants and are some functions of shear displacement. The 
study establishes the relationship as two-parameter hyperbolic function for both 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝜓𝜓. It is also 
found that the shear displacement at zero dilation angle (𝑑𝑑 at 𝜓𝜓 =  0) marks the yielding of the 
sample as well as the occurrence of basic friction angle. This is a remarkable coincidence since 
beyond this displacement (𝑑𝑑𝑦𝑦 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑝𝑝), dilatant behaviour prevails. Based on the above, the 
development of shear stress (𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑦𝑦) is due to the dilation of the joint. This work presents a 
mathematical framework for estimating basic friction angle and dilation angle using the 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝜓𝜓 
functions. It is also established that shear stress 𝑑𝑑 is a logarithmic function of 𝑑𝑑 and 𝑑𝑑𝑝𝑝 can be 
estimated as 𝑑𝑑𝑝𝑝 = 𝑑𝑑(𝑑𝑑𝑝𝑝). 
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