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ABSTRACT: Recent advances in machine learning/deep learning (ML/DL) methods show
promising results to enhance our ability to develop fast surrogate models and estimate heterogeneous
subsurface properties through inverse modeling approaches. In this work we explore physics-
informed neural networks (PINNs) as a way to incorporate governing partial differential equations
(PDEs) in the ML framework through loss functions. With advection-dispersion-reaction (ADR) and
Darcy equations, PINN methods are evaluated for multiple cases by changing model parameters and
the inverse modeling framework. This work demonstrates that PINNs tend to perform better than
data-driven only model with less collocation points and the potential capability of PINNs for accurate
surrogate models to coupled geomechanical problems in the subsurface.
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1 INTRODUCTION

Recent efforts to apply machine/deep learning (ML/DL) driven models for problems in flow,
transport, and coupled thermal-mechanical processes in natural and engineered environments
demonstrate promising outcomes (e.g., Kadeethum et al. 2022). Application for subsurface problems
is mostly based on a few DL architectures such as convolutional neural networks (CNNs), recursive
neural networks, generative adversarial networks (GANSs), and etc. “Deep” layers of neural network
(NN) with tunable weight and bias parameters can extract features from complex, nonlinear data
extremely well, identify the relationships between input parameters/data generation processes
(seismic event detection, anomaly detection, segmentation among others), and reconstruct physics of
interest (e.g., pressure, stress, velocity). However, these supervised DL methods require large,
labelled datasets to expand the generalization of trained model application.

As opposed to purely data-driven DL methods, physics-informed machine learning (PIML) was
developed as a promising avenue for advancing engineering and science research by implementing
physics-based information into ML process. The PIML framework aims to account for governing
equations (e.g., partial differential equations (PDEs)), physical constraints, real measurement data in
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learning process (e.g., Raissi et al. 2019; Karniadakis et al. 2021). One of the most popular PIML
methods is physics-informed neural networks (PINN) that use NNs to encode governing equations
with initial and boundary conditions (IC/BC) as loss functions. After Raissi et al. (2019), this novel
method has been applied in almost any science and engineering domains. In addition, the NN training
has both a data fit component and reduces a PDE residual, hence PINN can be used as an inverse
modeling framework if observed data is available (e.g., Cai et al., 2022).

Compared to traditional numerical methods, for PINNs computations are performed at exact
coordinates, hence are independent from the mesh/grid quality. Moreover, the loss term construction
that combines the PDE with observed data is trivial, providing a very powerful inverse modeling
framework, especially for ill-posed problems (Cai et al., 2021). Compared to standard NN-based
models, PINNs can achieve good accuracy with a small number of training data or even without
labelled data altogether (Raissi et al. 2019). However, PINNs with fully connected NNs have
convergence issues, especially in strong non-linear problems, and have the limit in generalization
with IC and BC of PDEs (Wang et al., 2022). Another form of PIML is from a concept of neural
operators (NOs)that facilitate a data-driven approach to learn functions from inputs to outputs. As in
PINNSs, governing equations can be incorporated into the loss functions to develop physics-informed
neural operators. There are multiple variants of this class of NOs available such as deep operator
network (DeepONet, Lu et al. 2021) and Fourier neural operator (FNO, Li et al. 2020). Although
neural operators are very promising, we focus on PINNs in the current work.

Here we use PINNSs as forward and inverse models to solve for an advection-dispersion-reaction
(ADR) equation and a Darcy equation to demonstrate how PINNs can be used for various conditions
in terms of data availability and a set of governing equations. Although we use a coupled flow and
transport problem, the methodology can be generalized for many subsurface geomechanics problems.

2 METHODS

In this work we follow a standard PINN framework with multiple governing equations and IC/BC,
similar to a multiphysics-informed neural network (MPINN, He et al. 2020). Instead of steady-state
advection-dispersion problems in He et al. (2020), we use transient advection-dispersion-reaction
(ADR) equation. The Darcy equation and BCs used in this work are identical to the work in He et al.
(2020). Due to the PDE of ADR, we set the IC to be zero concentration in the entire model domain.
Figure 1 shows an overall schematic of the PINN used in this work. Fully connected feed-forward
neural networks (so called dense neural network (DNN)) are used to estimate quantities of interest,
which can be concentration, head, and/or hydraulic conductivity in this work.

In general, the workflow of PINN is the following: (1) approximate quantities of interest using
DNNSs (outputs in Figure 1), (2) compute all derivatives of outputs with respect to space (x) and
time(7) using automatic differentiation, (3) compute the loss terms of governing equations, IC, and
BCs at a set of points del domain referred as collocation points, and (4) evaluate the mean square
error (MSE) and additional regularization terms as the loss term and data reconstruction error if
observed or synthetic data are available. This procedure is repeated through optimization of neural
networks (i.e., weights and biases) by minimizing the total loss. Since this optimization attempts to
minimize the residual form of governing equations, IC, and BCs, the final solution can learn physics
of interests. Since the optimization formula is the same as in the inverse modeling, which minimizes
the difference between observed data and predictions, we can use the PINN as an inverse model
when we have observed data. In this case, the loss term of data (L) is also minimized to estimate
the parameter(s) such as hydraulic conductivity given the observed concentrations. The overall PINN
architecture and optimization process in this work follows those in He et al. (2020), wherein detailed
neural network architectures and definition of terms in the MPINN are provided. Since we work on
transient ADR, the addition of IC creates another challenge due to the change of concentrations along
inlet boundary at ¢ > 0. Figure 2(a) shows the 2-D model domain with BCs. For simplicity, we use
an analytical solution provided in Paladino et al. (2018) to generate training/testing datasets.

In this work, we use 4 hidden layers with 40 nodes per each hidden layer using mean square error
loss and 10,000 epochs. The model domain has dimensions of 26 x 26 with 11 temporal points. Three
cases are evaluated: (1) Case 1 with concentration data-driven only (i.e., no PDEs), (2) Case 2 with
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concentration data and ADR, and (3) Case 3 with concentration and head data and ADR and Darcy
equations. We also evaluate three different decay values (0, 0.1, and 0.5). In addition, the optimal
number of collocation points were determined where governing equations are evaluated. The number
of collocation points are selected randomly in space and time, which are training data points, and the
rest of the entire field are used as testing set to evaluate the accuracy of trained PINN models.

3 RESULTS AND DISCUSSION

We first evaluate the sensitivity of the PINN relative errors to the number of collocation points
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Figure 1. A schematic of a PINN for advection-dispersion-reaction and Darcy equations. I.C. and B.C. stand
for initial condition and boundary conditions, respectively. Governing equations of two-dimensional
advection-dispersion-reaction and Darcy equations with initial and boundary conditions are shown. A total
loss is the sum of four loss terms from residual equations (Lppg), initial and boundary conditions (L;c, Lscs),
and data reconstruction (Lp.w«) if observed data is available. Weight factors (wi,2,3,4) are adjusted to balance
the total loss to avoid dominating any one loss term. DNN stands for deep neural network and output
represents predicted quantities from DNN. &; represent the weights and biases of neural networks where i =
concentration (C), head (%), and hydraulic conductivity (K).
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Figure 2. (a) A schematic of two-dimensional model domain (0.5 x 0.5). The inlet concentration (Ci,) is
defined over the central part (0.2<y<0.3) of the inlet boundary with a constant flow velocity (). The blue
line shows the advective front of the concentration at time, t. Contour plots are examples of concentration
profiles based on analytical solution of ADR in Paladino et al. (2018). (b) Effect of a number of collocation
points on the relative error of PINN for three Cases.

(N) for all three Cases. Figure 2(b) shows that the relative error decreases with increasing the number
of collocation points (both space and time). Given that the relative error is relatively similar at N
=500 and more, we use N = 500 for the rest of cases to save computational time. Accuracy of three
different cases with different decay coefficients is evaluated in Table 1. MSE values are computed
at collocation points as well as for the entire modeling domain and for all time steps. For N=500,
MSE values at collocation points were relatively good at a scale of 10~107, while the MSE values
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at the non-collection grid points increase to the order of 107, Interestingly, for N=1,000, MSE values
at collocation points are at the order of 10~ and MSE values at the entire domain decrease by ~ one
order of magnitude, implying that training at more collocation points can improve the accuracy
significantly with additional computational cost. For N=500, Cases 2 and 3 with PINNs perform
better than data only Case 1, however, for N=1,000, Case 1 has a better result. It was also reported
in He et al. (2020) who showed that N>80, data-driven only ML performed better than PINNs.

This is mainly due to the fact that in this example a large number of data (N=1,000) are sufficient
to train the data-driven model. However, for cases with data availability much smaller as in more
complex and realistic conditions, PINNs will perform better than data-driven only models.

Figure 3 shows concentration profiles (ground truth and PINN result) for Case 3 and
corresponding loss plots from different terms. Error is overall higher around plume boundary due to
fewer collocation points, and, as seen in Table 1, the increase of collocation points improves
prediction accuracy. More interestingly, the loss plots in Figure 3(b) show that the overall loss is
dominantly governed by the losses from concentration data, the IC, and BCs. This demonstrates
learning IC and BCs is not an easy task given the importance of ICs and BCs for PDEs. Although
we do not evaluate this phenomenon thoroughly, discussion on this issue can be found in the literature
(e.g., Cuomo et al. 2022). Figure 3(c) shows the predicted velocity field where the ground truth is
the constant horizontal velocity with no vertical velocity. This is an inverse modeling case where
head and concentration data at collocation points are used to estimate a hydraulic conductivity field
which is used for velocity calculation. As briefly mentioned, this is one advantage of PINNs, where
inverse modeling can be performed in a Bayesian framework (see Karniadakis et al. 2021).

Table 1. Mean square error of three different cases with different decay coefficients and collocation points.

Parameter values Evaluation points Case 1 Case 2 Case 3
3=0. N=500 Col.location poiqts 6.09E-05 9.58E-05 5.62E-05
’ Entire space & time 3.54E-03 2.61E-03 2.25E-03
2=0.1. N=500 Col}ocation poiqts 6.39E-05 9.16E-05 7.81E-05
’ Entire space & time 3.40E-03 2.99E-03 1.62E-03
320.5. N=500 Col.location poiqts 9.76E-05 9.41E-05 7.46E-05
’ Entire space & time 2.71E-03 2.06E-03 2.25E-03
Collocation points 6.55E-04 9.76E-04 1.05E-03
2=0.5, N=1,000 Entire spacep& time 4.81E-05 1.09E-04  1.08E-04
o 5(3) C(x1, x3) Ground Truth, t =1 C(x1,x2), t=1.0 o Absolute error: C, t = 1.0
0.4 y 0.05
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Figure 3. (a) Comparison of concentrations (analytical solution (left) and predicted one (middle)) in Case 3
(A=0.5, N=500) at the last time step and (b) corresponding loss plots from different terms. (c) Predicted
velocity field using inverse modeling with observed concentration and head for Case 3.
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4 SUMMARY

We evaluate PINNs for multiple equations as both a forward and inverse modeler. Since data-driven
DL is able to model large quantities of complex data to produce complex outputs without knowing
underlying physical principles, physics-informed ML holds promise for subsurface applications.
Although the analytical solution with constant parameter values of hydraulic conductivity, diffusion
coefficient, and decay coefficient, the proposed framework can be readily applicable for more general
systems of equations with a range of parameter space where analytical solution can’t be used. In
addition, PIML can improve both DL performance and the speed at which we train DL models,
especially for incomplete, sparse, and/or noisy training data.
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