
ABSTRACT: The standard method for determining the set of five independent elastic constants of 
transversely isotropic rocks relies on the conduction of at least three UCS tests with directional radial 
strain measurements on samples with varying isotropy plane orientation. However, in many cases 
only averaged values for the lateral strains are available from chain extensometer measurements as 
commonly carried out in rock mechanics laboratories. Such measurement setups disregard the 
anisotropic deformational behavior of transversely isotropic rock samples which appears as a result 
of non-horizontal isotropy plane orientations. A direct utilization of averaged radial strains in the 
determination of the five independent parameters without further considerations is thus not possible. 
In this paper a possible scheme for the inclusion of circumferential strain measurement information 
in the determination of the elastic constants of transversely isotropic rocks based on UCS tests carried 
out on three samples with varying isotropy plane inclinations is presented.  

Keywords: UCS tests, transverse isotropy, elastic parameters, circumferential strain measurement, 
Poisson’s ratio. 

1 INTRODUCTION 

A common assumption made in modelling the elastic deformational behavior of rocks with distinct 
planar structures (i.e., bedding, foliation, schistosity) is the assumption over transverse isotropy. 
Thereby, a plane of isotropy is assumed to be present parallel to the rock layering. Transversely 
isotropic materials feature five independent elastic parameters (Lekhnitskii 1981): The Young’s 
moduli E and Eꞌ in directions parallel and normal to the planes of isotropy; the Poisson’s ratios ν and 
νꞌ, referring to the lateral strains within the isotropy plane following normal strains applied in plane-
parallel and plane-normal directions; and the shear modulus Gꞌ connected to shear deformations in 
the plane of isotropy for shear loading in this plane. 

In literature different methods are proposed to determine these elastic parameters. While some of 
them rely on rather extraordinary test setups using specially shaped specimens and uncommon 
boundary conditions (e.g. Talesnick & Ringel 1999) some methods utilize standardized procedures, 
such as the uniaxial compression test (Amadei 1996, Barla 1972). As can be proven by theoretical 
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considerations, it is not possible to exactly determine all elastic constants by only one single uniaxial 
compression test (Nejati et al. 2019). Thus, either the approximate determination of unknown 
constants is mandatory or multiple tests on several specimens with varying isotropy plane 
inclinations need to be performed. The Poisson’s ratios and/or the independent shear modulus have 
to be calibrated based on lateral strain measurements in specific polar orientations along the sample 
circumference. However, due to difficulties associated with applying strain gauges especially to 
softer rock specimens, connected with poor surface adhesion, and the fact that alternative diametral 
strain extensometer setups are not readily available in many rock mechanics laboratories, directional 
measurements of lateral strains are often not feasible. Instead, lateral strains are frequently recorded 
in an averaged way on the basis of circumferential strain measurements using chain extensometers.  

In this study therefore a novel way of including the circumferential strain measurements in the 
evaluation of the set of elastic transversely isotropic constants is suggested. Section 2 provides 
theoretical background information. In section 3 the proposed framework for the determination of 
the elastic constants based on circumferential strain measurements is presented. The final section 4 
includes a condensed summary of the key points of the new procedure, discusses its limitations and 
presents and outlook for future studies.  

2 THEORETICAL BACKGROUND 

2.1 Cylindrical coordinate system 

All presented mathematical evaluations in this paper refer to a cylindrical coordinate system with the 
z-axis corresponding to the axes of the cylindrical specimens. The polar orientation θ of a point along 
the sample circumference at measuring cross-section level is chosen to be equal to the angle between 
the polar point direction and the Cartesian x-axis (oppositely oriented to the isotropy plane dip 
direction). The latter also defines the direction of a symmetry plane for transversely isotropic samples 
with respect to generated stresses and strains during axial loading (Dambly et al. 2019). Symbol β 
designates the isotropy plane dip angle. A graphical representation of the chosen cylindrical 
coordinate system and the reference Cartesian x-y-system is shown in Figure 1.  

2.2 Standard calibration procedure 

In order to calibrate the elastic constants of transversely isotropic cylindrical samples from UCS tests, 
the measured values for axial and oriented radial strains in the measuring cross-section must be 
correlated with theoretical strain equations (Barla 1972). These equations are derived from 
mathematical transformations of the generalized Hook’s law considering a transversely isotropic 
compliance matrix. In total, five equations for the five unknown elastic constants must be defined 
from three tests carried out in normal, parallel and inclined directions to the samples’ isotropy planes. 
The general equations of the normalized axial (εz) and radial (εr) strains of circumferential points on 
the measuring cross-section, in dependency of the elastic constants, the isotropy plane inclination β 
and polar orientation θ, are as follows (Dambly et al. 2019): 
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Provided that samples with isotropy plane inclinations of β = 0°, 45° and 90° are used in the 
calibration of the elastic constants and that the orientations of radial strain measurements correspond 
to polar orientations θ = 0° for the samples with β = 0° and 45° and θ = 90° for the sample with β = 
90°, more simplified equations can be obtained from Eqns. (1) to (2) (see Alejano et al. 2021). Eqns. 
(1) to (2) can be used to determine the elastic constants by replacing the equations’ left-hand sides 
with the measured values from the tests. Figure 1 provides an overview on the sequential steps in the 
standard calibration procedure and the directions for the radial strain measurements to be considered. 

 
Figure 1. Standard calibration procedure for the transversely isotropic elastic parameters and considered 

coordinate systems.  

3 PROPOSED CALIBRATION PROCEDURE 

The proposed methodology for the parameter calibration refers to the evaluation of the stress-strain 
curves on conducted unloading-reloading (UR) cycles. Due to the theoretical direction-independent 
uniform distribution of radial strains for samples with horizontal planes of isotropy (β = 0°), the radial 
strains εr for these samples can be inferred from the measurement of the circumferential strains εc 
using a chain extensometer (εr = εc). The Young’s modulus Eꞌ and Poisson’s ratio νꞌ can then simply 
be computed from Eqns. (1) and (2). The determination of Young’s modulus E is independent of any 
lateral strain measurement and is further accomplished from the information on the axial strain for 
samples with β = 90° inserted into Eqn. (2). The shear modulus Gꞌ can be received from the axial 
strain measurement of samples with inclined planes of isotropy (β = 45°) by invoking Eqn. (2). To 
come up with the derived value for the Poisson’s ratio ν, circumferential strain measurements of tests 
on samples with inclined and vertical planes of isotropy will both be incorporated. An optimization 
problem is set up with the aim of minimizing the differences in the measured and theoretical values 
for circumferential strains, determined as the change in circumference of assumed elliptical cross-
sections of the samples at the lower bound σLB and upper bound σUB stress levels of the UR cycles. 
The assumption is followed that the samples retain the circular initial geometry, when the load along 
the unloading path is reduced to zero. Thus, any influence of plastic deformations on the cross-
sectional shape of the samples is neglected in the evaluation of theoretical circumferential strains. 
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3.1 Theoretical cross-section geometries - sample with β = 90° 

From the assumption of a circular cross-section in the case of complete unloading, the main axes of 
the elliptical cross section at stress level σLB are given by x90 and y90 with y90 = K90x90. Length x90 is 
determined from the initial radius r plus the amount of elastic deformations (derived from Eqn. 1) 
from zero stress to the lower bound stress level σLB as x90 = r ⋅ (1+ νꞌ/Eꞌ⋅ σLB). Length y90 is dependent 
on the unknown Poisson’s ratio ν and is given by y90 = r ⋅ (1+ ν/E⋅ σLB). Factor K90 can then be 
computed as the ratio of y90/x90 (Eqn. 3). The main axes of the ellipse at the upper bound stress level 
σUB are received from adding the theoretical elastic deformations Δx90 and Δy90, following a stress 
increase by Δσ = σUB - σLB, to the values for x90 and y90, whereby Δy90 = Q90Δx90. The length changes 
compute as Δx90 = r ⋅ νꞌ/Eꞌ⋅ Δσ (known) and Δy90 = r ⋅ ν/E⋅ Δσ (unknown). Factor Q90 is presented in 
Eqn. (3). 
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Figure 2 provides an overview of the considered parts and stress levels of the stress-strain curve for 
the evaluation of the elastic parameters and the theoretical assumption on the cross-sectional shapes 
of the measuring cross section at these various stress levels.  

 
Figure 2. a) Considered stress levels along the UR-cycles of the stress strain curves and b) associated cross-

sectional geometries. 

3.2 Theoretical cross-section geometries - sample with β = 45° 

The considerations for the evaluation of the cross-sectional geometry of the sample at lower and 
upper bound stress levels σLB and σUB are the same as described in section 3.1 for samples with β = 
90°. The only difference is the value of β to be considered in the interpretation of the elastic strains, 
elastic deformations respectively, following Eqn. (1). For samples with β = 45°, the initial axes x45 
at stress level σLB and the length change Δx45, following a stress increase by Δσ, are given as stated 
below:  
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Eqns. (4) and (5) are independent of the unknown Poisson’s ratio ν and can be evaluated with the 
already known information. The relationships for the initial axis length y45 and length change Δy45 
are established as y45 = K45x45 and Δy45 = Q45Δx45 with factors K45 and Q45 as given in Eqn. (6). 
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3.3 Ellipse perimeter and theoretical circumferential strains 

For computing the theoretical perimeter p of the elliptical cross sections of the samples at various 
stress levels, based on the geometrical relationships for the semi axes length (x, y) discussed in 
sections 3.1 and 3.2, an approximation by Linderholm & Segal (1995), considering the effective 
radius rꞌ, is used. 
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Using Eqn. (7), the perimeter of the assumed elliptical cross-sections for samples with various 
isotropy plane inclinations β (45°,90°) at the lower stress level σLB can be computed as  
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and at the upper bound stress level σUB as 
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Then, the theoretical circumferential strains in relation to the initial sample geometry with radius r 
can be calculated as 
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3.4 Optimization process 

The actual value for Poisson’s ratio ν is found from the solution of a non-linear optimization problem 
with a defined objective function to be minimized. The objective function is defined depending on 
the sum of the squared errors between the measured strains εc,UR,β and the theoretical circumferential 
strains εc,β

* acc. to Eqn. (9). 

-2482-



 
𝑓𝑓(𝜈𝜈) = ��� 𝜀𝜀𝑐𝑐,𝑈𝑈𝑈𝑈,𝛽𝛽 − 𝜀𝜀𝑐𝑐,𝛽𝛽

∗�2

𝛽𝛽

      𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛽𝛽 = 45° 𝑎𝑎𝑎𝑎𝑎𝑎 90°       (11) 

The optimization problem can be solved with any of the available non-linear optimization algorithms. 
Bounds can be set on the variable ν to prevent solutions outside the realistic range. 

4 SUMMARY AND OUTLOOK 

In this paper a theoretical framework for the evaluation of the transversely isotropic parameters based 
on 3 UCS tests performed on samples with horizontal, inclined and vertical planes of isotropy 
including circumferential strain measurements has been developed. For the evaluation of the 
theoretical circumferential strains of the samples within unloading-reloading cycles the assumption 
of cross-sectional ellipticity has been made. The elliptical geometries of the cross-sections at various 
stress levels have been determined based on the initial sample geometry and the considered load 
levels causing elastic deformations as derived from the theory of anisotropic elasticity. The 
perimeters of the deformed cross-sections have been approximated by the determination of an 
effective radius for the corresponding ellipses. An objective function in dependency of Poisson’s 
ratio ν has been defined including measured and theoretical values for the circumferential strains. 
The calibration of this parameter has been suggested to follow from the solution of an associated 
non-linear optimization problem.  

So far, the proposed frame work has not been extensively employed on test results from 
anisotropic rock samples. Due to the neglection of plastic deformations in the considerations for the 
cross-sectional geometries the adoption of the described calibration procedure might be limited to 
rocks with a minor plastic behavior or UR-cycles performed at low stress levels. Further, the involved 
approximations of the ellipse perimeters might cause inaccuracies in the final values for the Poisson’s 
ratio ν. It is the aim of future studies to investigate the practical applicability of the proposed method 
and to quantify the involved uncertainties.  
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