
ABSTRACT: Owing to the advancements in the field of machine-learning (ML), the prospects of 
coupling ML with engineering analyses are currently being realized for various applications. Such 
applications can be particularly useful for geological engineering, where the ground properties are 
heterogeneous and hard to estimate accurately. In this regard, surrogate models are being increasingly 
used as tools to accelerate learning for both research and practical applications. In this paper, we 
describe the application of a surrogate model for the analysis of a slope stability problem using the 
limit equilibrium slice method. For setting up the surrogate model, two primary stages are required: 
1) artificial data generation, where numerous results are computed, and: 2) data learning, where ML 
is used for building the correlation between the problem inputs and results of interest. Through this 
relatively simple example, we demonstrate how routine engineering tasks can be readily automated. 
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1 INTRODUCTION 

Given the state of current knowledge in rock engineering, most problems do not allow for accurate 
predictions of rock mass response to excavations (Elmo et al., 2022). In rock and soil engineering 
projects, owing to the heterogeneous nature of the geological materials, it is generally advised to 
examine a range of input parameters, even after rigorous site investigations (Lees, 2013). For this 
reason, probabilistic tools have been coupled with geotechnical analysis (Abdulai & Sharifzadeh, 
2021). For some problems, it is advantageous to use approximated closed-from solutions for rigorous 
probabilistic analysis that consider the range of inputs and results, rather than invest in a small 
number of highly complicated numerical models (Mitelman & Elmo, 2019). Indeed, commercial 
codes that rely on simpler solutions offer built-in probabilistic analysis capabilities. Examples 
include commercial codes such as RocSupport, for tunnel support design, and Slide, for slope 
stability problems (Rocscience, 2004). Due to the rapid advancements in computing power, it has 
become more reachable to couple probabilistic analysis with numerical modeling codes. An example 
for this is the Monte Carlo analysis feature available in the elastoplastic numerical code RS2 
(Rocscience, 2007). Probabilistic analysis allows the engineers to extract valuable insights for the 
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investigated problem, primarily, by allowing for the assessment of the range of anticipated outcomes. 
In addition, probabilistic analysis can be used for computing the probability of failure (PoF), which 
provides a better means for determining the reliability of a system compared to the traditional factor 
of safety (FoS) (Phoon et al., 2022). 

With the immense increase of computing power and digital data generation, ML algorithms have 
emerged as powerful computational tools for applications that require the analysis of large sets of 
data. ML has been recognized as a potential tool for revolutionizing the field of rock mechanics by 
collecting extensive field data via digital instrumentation and correlating it to various measurable 
rock mass responses (Morgenroth et al., 2019). The main obstacles of actualizing many potential 
applications of ML for such research projects is related to the acquisition of data. The cost of 
monitoring device installation is great, and in many projects, limited reliable data is generated. 
Moreover, the data that is generated often requires extensive efforts for preparing the data for ML.   

Another potential of ML involves coupling it with artificial data generated by numerical 
modeling. This type of coupling is often referred to as surrogate models. An excellent review of the 
concept of surrogate models is given by Furtney et al. (2022). Surrogate models allow for fast and 
efficient analysis of various problems (Tao et al. 2022; Salazar and Hariri-Ardebili, 2022). Compared 
to field data, artificial data is relatively easy to generate and prepare. Particularly, when probabilistic 
tools allow for the user to export data as an Excel table, or any other form of text file. Using open-
source packages, this data can be readily "learned" by ML models. 

In this paper, we present an example of a surrogate model trained on artificial data generated via 
the program Slide2, by RocScience. This program is based on the limit equilibrium method of slices. 
Currently, there are many excellent textbooks that provide both theoretical background, as well as 
practical exercises and code examples for the application of ML (e.g. Géron, 2022). Rather than 
focusing on technical aspects of ML implementation, we focus here on the general framework and 
application of the surrogate model.  

2 SLOPE STABILITY PROBLEM BACKGROUND AND DEFINITION  

Historically, numerous limit equilibrium methods have been developed for slope stability analysis 
(Hoek & Bray, 1981). Within these methods, the FoS is calculated as the ratio of rock or soil shear 
strength to the shear strength on the verge of failure. For a rock mass that behaves as an equivalent 
continuum, the method of slices can be used for FoS calculation. Several researchers have developed 
different limit equilibrium methods. In particular, the slice method allows for solving slope problems 
using an iterative solving scheme, where the plane with minimal shear resistance is searched for. A 
number of solutions have been derived for the method of slices according to different underlying 
assumptions. A review of this method, as well as the popular approaches, is given by (Budhu, 2020).  

Following the advent of numerical codes, Zienkiewicz et al. (1975) developed the shear reduction 
method (SRM), where the FE code gradually reduces the shear strength, until failure initiates. 
Compared to limit equilibrium methods, there are different advantages of solving slope stability 
problems with FE codes. This has been realized by commercial codes that have included SRM as a 
built-in feature (Rocscience, 2007). However, implementation of SRM requires an iterative solving 
scheme, where a single slope model is re-computed with a diminishing set of values for the strength 
parameters. Hence, checking for different slope angles with different ranges of input parameters 
would require the user to build several models, where each model would require a lengthy solving 
time. In addition, this process would be limited to a uniform diminishing of the strength properties. 
For example, if using the Mohr-Coulomb failure criterion, the pre-defined cohesion and friction angle 
are reduced simultaneously, and other possible combinations. 

For the current example, the following scenario is analyzed: the stability of a rock slope made of 
sandstone material is investigated. The sandstone strength varies considerably, from soil-like 
material up to weak rock. The slope height is fixed, and the slope angle varies from 60o to 900. At 
the top level of the slope is a distributed load of 100 kPa is in order to account for loading from future 
structures. Figure 1 shows the problem geometry.  
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Figure 1. FE model for verification. The slope angle α is varied from 60o to 90o.  

The rock mass is generally massive, and therefore an equivalent continuum behavior using the Mohr-
Coulomb failure criterion is deemed as a sufficient approximation of reality. Accordingly, three input 
parameters are varied: the friction angle, cohesion, and unit weight of the rock mass. The minimum, 
mean and maximum values of each input parameter are listed in Table 1. The slope is divided into 
50 slices, and the Morgenstern & Price slice method is used for the analysis (Morgenstern & Price, 
1967). 

Table 1. Input parameters and their variation. 

Rock mass inputs Units Minimum Mean Maximum 
Cohesion [kPa] 50 100 150 
Friction angle [°] 20 40 60 
Unit weight [kN/m3] 20 22 24 

 
Figure 2 shows the results of the Monte Carlo analysis according to the input parameters listed in 
Table 1, as well as the variation of slope angle. The histogram shows the distribution of FoS, where 
for instances of failure (i.e. FoS<1) the bars are marked in red. The PoF is equal to the number of 
failure instances divided by the total instances. For this example, PoF=5.4%. 

 
Figure 2. Monte Carlo results for FoS and PoF. 
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3 SLOPE STABILITY SURROGATE MODEL  

In order to build a surrogate model, the user needs to define their desired learning process. The 
straightforward operation of surrogate models is for forward analysis, i.e. the input parameters are 
defined as inputs, and the results of interest are defined as target outputs. This type of surrogate 
model allows for instantaneous predictions given any set of input parameters within the defined range 
used for training the ML model. During project construction, it is frequent that decisions must be 
made rapidly, rendering the surrogate model a highly useful tool. Some applications require solving 
for the inverse problems, i.e. results are defined as inputs and input parameters are defined as target 
outputs, which are more difficult to solve accurately, and in some cases may be unsolvable. For both 
forward and inverse problems, the standard ML approach involves applying supervised learning 
models. For this paper, ML is used for developing a forward analysis surrogate model.  

It is standard practice to compare a number of ML models, and to select the one that is most 
accurate. For this problem, a simple multiple linear regression model is found to perform well on a 
data set of 500 models (the coefficient of determination R2=0.96, and root mean square error 
RMSE=0.1). This high accuracy is found satisfactory, and therefore the ML model can be used as a 
surrogate model for making further predictions. Hence, in given combination of input parameters 
and slope angle can be fed as input into the model, and the corresponding FoS can be computed 
instantaneously. 

Other operations that are not as straight-forward could be undertaken as well. For example, let us 
consider the automation of the computation of the PoF for any narrow range of input parameters. 
This capability is particularly useful for geotechnical applications, where in the beginning of a project 
a wide range of parameters must be estimated, as the available field data is limited. As the project 
progresses, the estimated data is narrowed. In order to do so, a Monte Carlo algorithm can be used 
to generate new data within the defined narrow range. The surrogate model can then make predictions 
of the FoS. Finally, the PoF can be computed. The proposed scheme is shown in Figure 3. 

 
Figure 3. Proposed scheme for automating PoF for narrow range of data. 

The problem presented here assumes many simplifying conditions. Depending on the complexity of 
the problem, the ML process may require more intensive programming. As stated, the program Slide2 
consists of a built-in Monte Carlo model generator for varying input parameters, as well as other 
inputs (e.g. groundwater level, ground support, and more). However, it is currently not possible to 
include the variation of geometry within the automated solving process in Slide2. Thus, in order to 
obtain results of a different slope angles, the modeling process was repeated manually varying slope 
angles. The authors encourage managers and developers of engineering software programs to allow 
for users to readily implement ML tools for automation and enhanced analysis capabilities. 
Specifically, probabilistic analysis are an ideal starting point for such applications. With slight 
modifications, built-in probabilistic tools could provide users with the ability to generate datasets 
that consist of varying input parameters, as well as varying slope geometry. 
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