
ABSTRACT: Rock burst, which is exceptionally powerful and abrupt, is one of the most dangerous 
geological hazards in deep mines. Although it is difficult to prevent rock explosions, it can be 
predicted with continual monitoring. Traditional monitoring systems produce a large quantity of data 
and false signals. Most methods are affected by blasting and other mining activities. This study used 
modulated thermal wave imaging to locate the high damage zone in a rock sample containing 
artificially implanted subsurface microcracks prior to any rock bursting. Finite element (FE) 
simulations were used to examine the infrared thermal response of a rock sample to a fixed-frequency 
sinusoidal heat wave. To automate detection, a cutting-edge deep-learning technique was used to 
identify, localize, and segment cracks. A sizable dataset of images with a resolution of 640×480 was 
produced for the algorithm training and validation. The F1 score and precision of the applied method 
were considerably high. 
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1 INTRODUCTION 

Resource extraction depth is increasing exponentially as a result of technological advancements and 
increased demand for ores. When a mine is dug deeper, the most common problem is a rock burst 
(Budiansky et al. 1976), which occurs quickly and eventually results in the collapse of the entire 
structure. Sometimes it is so devastating that it won't give the mine workers enough time to escape 
safely. As a result, research into early rock burst prediction has been ongoing for many years. It is 
exceedingly challenging to forecast because of the heterogeneity and high confining pressure in the 
underlying rock. Due to excavation, tensile stress increases in the principal plane of the tunnel, 
creating microcracks at weak spots (as shown in Figure 1) and softening the entire rock mass (Piane 
et al.,2015 and Griffiths, L et al., 2017). As these cracks spread, rock bursts occur. Therefore, rock 
bursts can be projected by continuous monitoring of precursors such as the formation of microcracks 
or weak spots. Researchers have used various predicting methods based on stresses present on rock 
(Miao et al., 2016), microcosmic activity (Lu et al., 2012), acoustic emission (He et al., 2010 and He 
et al., 2019), electromagnetic radiation (Li, Xuelong, et al., 2016) and optics (Luodes et al., 2008). 

15th ISRM Congress 2023 & 72nd Geomechanics Colloquium. Schubert & Kluckner (eds.) © ÖGG  
 

Modulated thermal wave imaging approach to detect subsurface 
microcracks and their coalescence in deep mines for rock burst 
(strain burst) prediction. 

Mrityunjay Jaiswal  
Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India 

Resmi Sebastian 
Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India 

Ravibabu Mulaveesala 
Centre for Sensors, iNstrumentation and cyber-physical Systems Engineering (SeNSE), Indian Institute of 
Technology Delhi, Hauz Khas, New Delhi 

-385-



The traditional methods are contact and point-based methods, and their accuracy is strongly reliant 
on the accessibility of each and every corner in the region of interest. Furthermore, all of the methods 
mentioned above are affected by background noise and are associated with significant errors. 
Therefore, a meticulous non-destructive testing method is demanded to assure the structural integrity 
of a rock structure in mines and tunnels. As a result, in order to address the aforementioned issue, 
continuous temperature monitoring is a solution that is currently being employed in a wide range of 
industries. Every material has its own thermal signatures and whenever any event occurs or some 
cracks generate, the temperature at that location increases (Guerin et al.,2019) which can be 
monitored using an infrared thermal camera, which is referred to as, infrared thermography (IRT). 
Using infrared thermography, it is quite possible to characterize the rock failure stages and location 
of burst prone zone. Furthermore, Guerin et al., (2019) have used this technique for a rock quality 
survey by observing the temperature of a rock mass at various time intervals. Due to the exposure to 
sunlight, the temperature of rocks increases in the daytime and they get cooled down at night. Since 
every material takes its own time to heat and cool, researchers adopt this method to monitor the 
exposed rock to investigate the presence of fractures, joints and rock bridges. This method is very 
advantageous as it is fast, reliable and can be inspected remotely. However, it is a time-consuming 
method, as one single observation takes a whole day and night and rock masses at deep mines and at 
deep tunnels are not exposed to sunlight. As a result, the efficacy of active thermography, which 
involves heating and cooling the rock surface in a specific pattern with external heat, has been 
examined in this work. Typically, the external temperature application pattern appears in the form of 
a rectangular pulse, a sinusoidal pulse with a fixed frequency (commonly referred to as lock-in 
thermography), or a sinusoidal pulse with an encoded variable frequency. However, this particular 
study illustrates only the responses and feasibility of a fixed-frequency sinusoidal pulse and proposes 
a post-processing approach to reduce the noises during experiments. A cutting-edge deep learning 
algorithm has been used for training and validation in order to automate the identification procedure. 

  
Figure 1. Schematic diagram of the initiation of microcrack zone inside a tunnel. 

2 METHODOLOGY 

2.1 Simulation of a heat wave  

The proposed approach simulates a 3-dimensional granite rock with fabricated cuboid-shaped 
microcracks; the crack was assumed to have no filler material (see Figure 2). The thermophysical 
characteristics of the granite and the air inside the crack are displayed in Table 1. The cracks were 
so positioned that they formed a junction which was the meeting point of one main crack and two 
wing cracks. Tetrahedral elements were used to create models with a normal mesh to perform 
numerical simulations using the finite element method (FEM) based application COMSOL®. The 
mesh density and element count were adjusted through a series of iterations in order to reduce the 
computing time and truncation error. A standard infrared imaging experiment on a rock sample is 
illustrated in Figure 3. Heat modulation in the form of a fixed-frequency sinusoidal wave (see Figure 
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4) was produced using the control module attached therein. The control device additionally 
synchronizes the thermal infrared camera's frequency of acquisition. 

  
Figure 2. Schematic representation of granite with artificially planted crack. 

Table 1. Thermophysical properties of granite and air inside the crack. 

Properties  Granite Air (at 1 atm) 
Thermal conductivity, k(W/m.K) 2.9 0.024 
Density, 𝜌𝜌(kg/m3) 2600 1.208 
Heat carrying capacity, c (J/kg-K) 850 1006 

 

  
Figure 3. Schematic of the typical infrared thermography experimental arrangement. 

The angular frequency of the thermal wave is calculated using the heat diffusion equation as: 
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When, the external boundries were considered as in adiabitic condition and the heat stimulus as a 
sinosoidal wave, the solution of above equation is,  
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Where Q is the rate at which energy is created as a result of an external heat source, Tg is the spatial 
temperature of rock at time t, 𝜌𝜌𝑜𝑜 is density, 𝑐𝑐𝑜𝑜 is specific heat capacity, and 𝑘𝑘𝑟𝑟 is thermal 
conductivity. The thermal diffusivity of rock sample, designated as "alpha (𝛼𝛼)," is determined by  

𝛼𝛼 = 𝑘𝑘𝑜𝑜
𝜌𝜌𝑜𝑜𝑐𝑐𝑜𝑜

      (3) 
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.   

Figure 4. Schematic diagram illustrating the sinusoidal heat stimulus. 

The initial temperature was assumed to be 300.15 K, which represents the average room temperature. 
The subsequent heat reactions over the surface of rock were recorded at a rate of 10 frames per 
second. 

2.2  Post processing  

Zero mean thermal gradient: The output thermogram generally has noises from uneven heating, 
emissivity, or other outside factors. The direct analysis of the thermogram can yield some inaccurate 
results, hence post processing is required. In order to verify the effectiveness of the recommended 
technique for detection in the presence of noise, Gaussien noises were added to the thermograms 
obtained from the simulation. Furthermore, the pixel value of each thermogram which cointains 
noises were processed using MATLAB to obtain a zero mean pixel curve by polynomial fitting of 
temporal pixel value (as shown in Figure 5). 

 
Figure 5. Zero mean pixel profile of thermogram. 

3 RESULTS AND DISCUSSION 

3.1 Detection potential 

Two zones, the high damaged zone and the low damaged zone, were created by dividing the total 
surface area of the rock. The signal to noise ratio (SNR) was used as a measure of efficiency, and the 
resulting thermogram and average pixel value for both zones were analysed. The thermogram of 
granite, which was created from the fitted noisy data, is depicted in Figure 6. Figure 7 illustrate the 
outcome after processing zero mean to noisy thermal data. It was discovered that the temperature 
difference between the sound zone and cracked zone is less than 70 mK, implying that the thermal 
camera needs to be sensitive to temperatures below 70 mK to distinguish between cracks and the 
sound zone. 
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Figure 6. Thermogram obtained from simulation at t=30 sec a) before post processing b) after post 

processing. 

3.2 Deep learning algorithm 

The numerical experiments were repeated with various crack dimensions, and the location and depth 
of the crack were varied to prepare a dataset. The obtained datasets were trained using U-Net, a state 
of the art algorithem of deep learning. To evaluate the detection performance, F1 score was used in 
this study, which can be obtained as: 

F1 =
1
2recall×precision

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   
     (4) 

Here, the ratio of correctly recognised pixels to all detected pixels, including erroneous detection, 
can be used to derive the precision value. The recall value was calculated as the proportion of 
correctly recognised pixels to pixels in actual objects. From table 2, it can be seen that the precision, 
recall and F1 score are substantially good in this algorithm to detect even microlevel cacks. Figure 8 
illustrates the crack detected through U-Net algorithm. 

Table 2. Performance of U-Net algorithm. 

 precision 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 F1 
U-Net 70.89% 81.82% 75.96% 

 
Figure 8. Crack detection after applying U-Net algorithm. 
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4 CONCLUSION 

In this work, the feasibility of active thermography to detect the subsurface microcracks coalescence 
zone in a noisy environment has been assessed. A state-of the art deep learning algorithem U-Net 
has also introduced to automate the detection process such that objectivity can be obtained in the 
proposed method. 

The following conclusions could be obtained: 
 
1) Thermography survey of a rockmass based on solar radition is a time taking procedure as, 

obtaining one heating and cooling profile takes a whole day and night at a single location. 
From the present study it has been found that external heat stimuls as sinosoidal wave, is 
efficient and reliable. 

2) The proposed post processing method in this study is quite efficient in reducing the noises 
arises due to non-uniform heating. 

3) The U-Net algorithm was trained and verified on a dataset of 800 thermograms with cracks 
in various patterns. The algorithm satifactoraly detected and located the crack zone with good 
precision, recall, and F1 scores of 70.89%, 81.82%, and 74.96%, respectively. 
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