
ABSTRACT: The non-stationary trend of rock joints significantly affects the shear strength of rock 
joints. Taking the least square fitting plane of a rock joint as a reference plane, two trend direction 
parameters α and β of the rock joint are proposed to characterize the non-stationary trend of rock 
joints quantitatively. α is the inclination angle of the rock joint along the shearing direction, and β is 
the deflection angle of the rock joint perpendicular to the shearing direction. Based on the trend 
direction parameters, the external normal and tangential stresses are decomposed into the normal and 
tangential stresses on the reference plane. Consequently, a rock joint shear strength model is 
established. Next, samples of different sizes are obtained from a large rock joint. Based on the 
established shear strength model, the shear strengths of the rock joint samples in different sizes under 
the influence of non-stationary trends are statistically analyzed. 

Keywords: Rock mechanics, rock joint, roughness, shear strength, non-stationary trend. 

1 INTRODUCTION 

The shear strength of the rock joints is one of the most important mechanical parameters for the 
stability evaluation of engineering rock masses (Barton et al. 2023; Wang et al. 2021, 2023). In actual 
engineering, it is difficult to directly obtain the shear strength parameters of rock joints through in-
situ tests and laboratory tests. Commonly, the rock joint of rock mass is cut into rock joint specimens 
in the same size, and the shear strength of the rock joint is estimated by evaluating the shear strength 
of each rock joint specimen (Yong et al. 2019; Kulatilake et al. 2021; Wang et al. 2022). According 
to the direct shear test method suggested by ISRM (Muralha et al. 2013), the shear region of the rock 
joint specimen should be guaranteed to be parallel to the shear plane. For rough and undulating rock 
joints, the least squares fitting plane can be taken as the reference plane of the rock joint (Tatone & 
Grasselli 2010). 

As shown in Figure.1, the dotted line is the least square fitting plane of the rock joint, and i1~i5 
are the angles between the least square fitting plane and the shear plane of the rock joint specimens. 
Figure 1 shows that when the reference plane of the rock mass structural plane is parallel to the shear 
plane, there is an angle between the cut rock joint specimen and the shear plane; that is, there is a 
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non-stationary trend. When evaluating the shear strength of rock joint specimens, due to the non-
stationary trend, the normal stress and shear stress acting on the actual shear plane is different from 
the externally applied stress values. If the existing shear strength formula that did not consider the 
influence of the non-stationary trend of the rock joint is used to calculate the shear strength of the 
rock joint specimen, the calculated shear strength will be inconsistent with the actual shear strength, 
which will eventually affect the accuracy of the shear strength estimation of rock mass. 

 
Figure 1. Schematic diagram of trend comparison between rock joint and rock joint specimens. 

Some scholars have noticed the influence of the non-stationary trend of rock joints on the evaluation 
of the shear strength and have conducted some relevant research on it. Kulatilake et al. (1995) took 
the average inclination angle of the rock joint topography to characterize the non-stationary trend. 
They obtained several sets of shear strength formulas by fitting the direct shear test data. While the 
parameters in the formula must be obtained by fitting the test results, and the non-stationary trend 
direction of the rock joint is calculated based on the two-dimensional section line in the shear 
direction. Zou et al. (2010) considered the influence of the non-stationary trend direction on the direct 
shear test results of rock joints based on the spatial stress state of the micro-section elements and the 
mathematical analysis method. Yong et al. (2013) corrected the theoretical analysis formula of the 
shear strength parameters of the rock joint according to the relative positional relationship between 
the shear direction and the trend direction of the rock joint. They verified the correction method of 
the theoretical analysis through the indoor model test of the smooth rock joints. However, both the 
research of Zou et al. and Yong et al. were based on the smooth rock joints without considering the 
effect of roughness on the shear strength of the rock joints. Wang et al. (2019) stabilized the 
specimens by keeping the plane of the cement mortar parallel to the least squares fitting plane of the 
structure surface; the influence of the non-stationary trend on its shear strength was eliminated. 
Therefore, the direct prediction of the shear strength of the rough rock joints with a non-stationary 
trend still needs further research. 

2 JRC-JCS MODEL MODIFICATION 

Barton and Choubey (1977) deduced the calculation formula of the JRC-JCS shear strength model 
through experiments: 

 𝜏𝜏p = 𝜎𝜎n tan �𝐽𝐽𝐽𝐽𝐽𝐽 ⋅ lg �
𝐽𝐽𝐽𝐽𝐽𝐽
𝜎𝜎n

� + 𝜑𝜑b� (1) 

In the formula: 𝜏𝜏p is the shear strength of the rock joint, 𝜎𝜎n is the normal stress acting on the rock 
joint, JRC is the roughness coefficient, JCS is the joint compressive strength, and 𝜑𝜑b is the basic 
friction angle. Equation (1) is suitable for calculating the shear strength of structural planes without 
a non-stationary trend. For the rock joint with a non-stationary trend, the applied normal stress and 
shear stress can be decomposed into its least square fitting plane, and the decomposed shear stress 
and normal stress are respectively parallel and perpendicular to the least square fitting plane. In this 
case, the JRC-JCS model can be used to evaluate the shear strength of the rock joint only when the 
decomposed stress is used for calculation.  
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The least squares fitting plane of the rock joint specimen is used as the calculation plane to carry 
out force analysis. As shown in Figure 2, the trend parameters α and β are the parameters that reflect 
the tilt state of the rock joint. To quantitatively characterize the trend direction parameters, the spatial 
position relationship between trend direction α and trend direction β and the shear direction is 
established. The shearing direction is the negative direction of the y-axis, and α is the angle between 
the least square fitting plane of the rock joint and the positive direction of the y-axis (the angle is 
positive if it is above the xoy plane and negative if it is below the xoy plane ), β is the angle between 
the least square fitting plane of the rock joint and the positive direction of the x-axis (the angle is 
positive if it is above the xoy plane, and negative if it is below the xoy plane). 

The internal normal unit vector and the shear direction unit vector of the least square fitting plane 
are set to 𝑉𝑉0  and 𝑉𝑉1  respectively, and the normal external stress and shear stress vectors are, 
respectively, 𝑉𝑉2 and 𝑉𝑉3 . θ , γ , ψ , φ are the space angles between vectors 𝑉𝑉2 and 𝑉𝑉0 , 𝑉𝑉0 and 𝑉𝑉3 , 𝑉𝑉3 
and 𝑉𝑉1 , 𝑉𝑉1 and 𝑉𝑉2 respectively, and the above four space angles will be deduced to connect with the 
trend α and the trend β, and the final calculation formula will also be expressed through α and β. 

 
Figure 2. Schematic diagram of the stress relationship on the least squares fitting plane of rock joint with the 

non-stationary trend. 

To facilitate the calculation of the relationship between stresses, the least square fitting plane of the 
rock joint is used as the datum plane, and the rectangular coordinate system o*-uwv is established by 
rotating the o-xyz coordinate system to the datum plane, as shown in Figure 3. Its unit direction 
vectors are 

 �
𝑢𝑢 = (sin𝛼𝛼sin𝛽𝛽,−cos𝛼𝛼,−sin𝛼𝛼cos𝛽𝛽)
𝑤𝑤 = (−cos𝛽𝛽, 0,−sin𝛽𝛽)
𝑣𝑣 = (−cos𝛼𝛼sin𝛽𝛽,−sin𝛼𝛼, cos𝛼𝛼cos𝛽𝛽)

 (2) 

The normal unit vector and the corresponding shear direction unit vector of the least square fitting 
plane are 

 �𝑉𝑉0 = −𝑣𝑣 = (cos𝛼𝛼sin𝛽𝛽,sin𝛼𝛼,−cos𝛼𝛼cos𝛽𝛽)
𝑉𝑉1 = 𝑢𝑢 = (sin𝛼𝛼sin𝛽𝛽,−cos𝛼𝛼,−sin𝛼𝛼cos𝛽𝛽) (3) 

The direction vectors of the normal stress 𝜎𝜎n and the shear stress 𝜏𝜏n are respectively set to 

 �𝑉𝑉2 = (0,0,−𝜎𝜎n)
𝑉𝑉3 = (0,−𝜏𝜏n, 0) (4) 
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The cosine values of the angle between the direction vector 𝑉𝑉2 of the normal stress 𝜎𝜎n and the normal 
internal vector 𝑉𝑉0 of the least square fitting plane and the unit vector 𝑉𝑉1 in the shear direction are 

 

⎩
⎨

⎧cos𝜃𝜃 =
𝑉𝑉2𝑉𝑉0

|𝑉𝑉2||𝑉𝑉0| = cos𝛼𝛼cos𝛽𝛽

cos𝜑𝜑 = cos(2𝜋𝜋 − 𝜑𝜑) =
𝑉𝑉2𝑉𝑉1

|𝑉𝑉2||𝑉𝑉1| = sin𝛼𝛼cos𝛽𝛽
 (5) 

The cosine of the angle between the direction vector 𝑉𝑉3 of the shear stress 𝜏𝜏n and the normal inner 
vector 𝑉𝑉0 of the least square fitting plane and the unit vector 𝑉𝑉1 in the shear direction are respectively 

 

⎩
⎨

⎧cos𝛾𝛾 =
𝑉𝑉3𝑉𝑉0

|𝑉𝑉3||𝑉𝑉0| = −sin𝛼𝛼

cos𝜓𝜓 =
𝑉𝑉3𝑉𝑉1

|𝑉𝑉3||𝑉𝑉1| = cos𝛼𝛼
 (6) 

The components of the direction vector 𝑉𝑉2 of the normal stress 𝜎𝜎n on the normal internal vector 𝑉𝑉0 
of the least squares fitting plane and the components on the unit vector 𝑉𝑉1 in the shear direction are 

 

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝜎𝜎n,1 =

|𝑉𝑉2|𝑉𝑉0cos𝜃𝜃
|𝑉𝑉0| = 𝜎𝜎ncos𝛼𝛼cos𝛽𝛽𝑉𝑉0

𝑉𝑉𝜎𝜎n,2 =
|𝑉𝑉2|𝑉𝑉1cos(2𝜋𝜋 − 𝜑𝜑)

|𝑉𝑉1| = 𝜎𝜎nsin𝛼𝛼cos𝛽𝛽𝑉𝑉1
 (7) 

The components of the direction vector 𝑉𝑉3 of the shear stress n τ on the normal internal vector 𝑉𝑉0 of 
the least squares fitting plane of the structural surface and the components on the unit vector 𝑉𝑉1 in 
the shear direction are 

 

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝜏𝜏n,1 =

|𝑉𝑉3|𝑉𝑉0cos𝛾𝛾
|𝑉𝑉0| = −𝜏𝜏nsin𝛼𝛼𝑉𝑉0

𝑉𝑉𝜏𝜏n,2 =
|𝑉𝑉3|𝑉𝑉1cos𝜓𝜓

|𝑉𝑉1| = 𝜏𝜏ncos𝛼𝛼𝑉𝑉1
 (8) 

From equations (7) and (8), the normal stress and shear stress of the least square-fitting plane can be 
obtained as 

 �
𝑉𝑉n = 𝑉𝑉𝜎𝜎n,1 + 𝑉𝑉𝜏𝜏n,1 = (𝜎𝜎ncos𝛼𝛼cos𝛽𝛽 − 𝜏𝜏nsin𝛼𝛼)𝑉𝑉0
𝑉𝑉𝜏𝜏 = 𝑉𝑉𝜎𝜎n,2 + 𝑉𝑉𝜏𝜏n,2 = (𝜎𝜎nsin𝛼𝛼cos𝛽𝛽 + 𝜏𝜏ncos𝛼𝛼)𝑉𝑉1

 (9) 

Substituting formula (9) into formula (1), we get 

 |𝑉𝑉τ| = |𝑉𝑉n|tan �𝐽𝐽𝐽𝐽𝐽𝐽 ⋅ lg �
𝐽𝐽𝐽𝐽𝐽𝐽
|𝑉𝑉n|� + 𝜑𝜑b� (10) 

where |𝑉𝑉τ|and |𝑉𝑉n| are the shear stress and the normal stress of the least square-fitting plane on the 
rock joint, respectively, and both |𝑉𝑉τ| and |𝑉𝑉n| are about the function of externally applied shear stress 
𝜏𝜏n. 

To find the shear strength 𝜏𝜏n, constructing the function 𝑓𝑓(𝜏𝜏n) with 𝜏𝜏n as the independent variable, 
and the calculation formula is 
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 𝑓𝑓(𝜏𝜏n) = |𝑉𝑉n|tan �𝐽𝐽𝐽𝐽𝐽𝐽 ⋅ lg �
𝐽𝐽𝐽𝐽𝐽𝐽
|𝑉𝑉n|� + 𝜑𝜑b� − |𝑉𝑉τ| (11) 

Substitute formula (9) into formula (11) to get 

 
𝑓𝑓(𝜏𝜏n) = |𝜎𝜎ncos𝛼𝛼cos𝛽𝛽 − 𝜏𝜏nsin𝛼𝛼|tan �𝐽𝐽𝐽𝐽𝐽𝐽 ⋅ lg �

𝐽𝐽𝐽𝐽𝐽𝐽
|𝜎𝜎ncos𝛼𝛼cos𝛽𝛽 − 𝜏𝜏nsin𝛼𝛼|�

+ 𝜑𝜑b� − |𝜎𝜎nsin𝛼𝛼cos𝛽𝛽 + 𝜏𝜏ncos𝛼𝛼| 
(12) 

3 COMPARISON OF SHEAR STRENGTH 

We collected the topography data of a large-scale natural rock joint and determined the study area, 
as shown in Figure 3. The maximum length and width of the study area are 2500 mm and 1000 mm, 
respectively. The large-scale natural rock joint is cut into a series of rock joints at 200mm intervals. 

 
Figure 3. Series size of rock joints. 

The shear strength of the series size of rock joints is calculated in the following three ways: (1) The 
shear strength is directly calculated by the JRC-JCS model; (2) Rotating the rock joints to eliminate 
the non-stationary trend, and calculate the shear strength through the JRC-JCS model; (3) The shear 
strength is calculated using the shear strength calculation formula considering the influence of non-
stationary trend of rock joint proposed in this paper. The calculation results are shown in Figure 4. 
The figure shows that the shear strength varies with the rock joint scale. Notably, the results 
calculated with the proposed method differ from the JRC-JCS model but are similar to the rotated 
results. 

 
Figure 4. Shear strength of series size of rock joints. 
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4 CONCLUSION 

In this paper, the non-stationary trend of rock joints was quantitatively characterized with two trend 
direction parameters. Based on the JRC-JCS model without considering the influence of non-
stationary trend, an improved shear strength model considering the influence of trend direction was 
proposed by carrying out stress analysis and numerical analysis. In addition, the topography data of 
a large-scale natural rock joint was collected. A series of joint specimens with side length ranging 
from 100 mm to 2600 mm were extracted from the large rock joint. The shear strength values of 
these specimens were calculated with the JRC-JCS model and the proposed method. The results 
showed that the results calculated with the proposed method differ from the JRC-JCS model but are 
similar to the rotated results. It should be noted that the results obtained from this study are limited 
to theoretical analysis. In the future, direct shear tests on rock joint specimens with various scales 
will be carried out to validate the feasibility of the proposed method further. 
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