
ABSTRACT: In-situ stress is a critical boundary condition that dictates many important rock 
engineering design decisions such as the orientation, dimensioning and support design of 
underground excavations for mining and civil infrastructure to ensure stability and safety, as well as 
the optimal orientation of horizontal boreholes for energy development projects (geothermal, 
unconventional gas). However, it is also one of the most difficult parameters to measure reliably, 
resulting in significant uncertainty and risk to these projects. This has seen the development of 
numerous stress measurement techniques, each with its limitations and reliability issues. Presented 
here are the first steps in the conceptualization and workflow for a non-destructive stress 
measurement technique using distributed fiber optic sensing and geophysical techniques that 
overcomes several key challenges and limitations, while adding value through increased 
measurement resolution and reliability. Numerical workflow results are presented that compare 
favorably with values based on experimental results. 
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1 INTRODUCTION 

Engineering analyses require boundary conditions. One of the most important of these for rock 
engineering design is the in-situ stress state. The in-situ stress is a tensor quantity, and it dictates 
many of the most important design decisions regarding excavation stability, orientation optimization 
and support design to ensure safety, as well as borehole stability and induced fracture orientation in 
the case of hydraulic fracturing for geothermal and unconventional gas development. However, it is 
also one of the most difficult parameters to measure, and to do so reliably and with confidence. It is 
not uncommon for stress measurements to indicate two conflicting stress regimes, resulting in 
significant uncertainty and risk to these projects. This frequently leads to less-than-optimal design 
performance and costly mistakes. Numerous stress measurement techniques exist, each with 
significant limitations and reliability issues. These are generally divided into two approaches 
(Amadei & Stephansson, 1997). The first involves measuring strain responses, for example, the strain 
relief from overcoring, from which the in-situ stress field is inverted (Sjöberg et al., 2003). These 
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suffer from reliability issues related to conformability where it is necessary to ensure that the 
measurement probe is properly attached to the rock. More importantly, they are limited to point 
measurements. A rock mass is rarely homogeneous and isotropic, and thus because these point 
measurements are made in boreholes, they are blind to any heterogeneity that may be present in the 
larger rock volume that can affect the measured strain response. The second approach is to measure 
the pressure required to hold a fracture of a given orientation open, for example, that generated 
through hydraulic fracturing, which gives stress information for that direction (Haimson & Cornet, 
2003). Although these involve larger rock volumes, they suffer from being destructive, generating 
new fractures in the rock that limit repeat validation testing and can later affect the strength and 
permeability of the rock (where these might be prohibitive, for example in the case of a nuclear waste 
repository). In addition to being destructive, these methods are only able to measure the stress 
through considerable effort that often restricts them to being made at a single point in time (where 
repeat measurements of stress change over time might be desired).  

Ideally, the use of a non-destructive technique that can measure both the in-situ stress state but 
also any subsequent stress changes in response to engineering activities (e.g., mining) would be 
advantageous. Even more so if the technique can do so for a larger representative volume of rock, 
measuring the far-field state away from a borehole, as well as along the length of a borehole to sample 
multiple locations relative to changes in the geology. A common non-destructive measurement 
technique is based on acoustic/seismic velocities (P- and S-wave) and distributed sensing. Acoustic 
velocity represents a high-resolution measurement that is sensitive to stress, that is transmitted into 
the rock mass, and can be carried out from a fixed measurement device for longer monitoring periods.  

This paper presents the initial results towards the testing of a new non-destructive stress 
measurement technique we are developing based on distributed sensing and fiber optics. Our research 
indicates that distributed fiber optic sensing has promising potential to overcome existing stress 
measurement challenges while also adding value through improved measurement resolution, 
repeatability and reliability. The results presented focus on a 3-D numerical workflow to support lab-
scale testing, generated to simulate seismic wave propagation within an instrumented rock sample 
subjected to hydrostatic loading with the capability to consider real-field conditions like rock 
anisotropy. 

2 BACKGROUND 

A significant amount of laboratory testing research has been conducted to investigate the effects of 
confining pressure on both the dynamic and static elastic constants of rock. The results of these 
studies have shown that seismic velocities in rocks are generally sensitive to stress, increasing with 
increasing stress. This is generally attributed to the closing of compliant, crack-like pore space, 
including microcracks and grain boundaries. As confining pressure is raised, the most compliant 
cracks/pores are closed, followed by the next most compliant, and so on. Closing pores increase the 
mechanical stiffness of the rock, and in turn, its acoustic velocities (Mavko & Godfrey, 1995; Wang, 
2002; Sone & Zoback, 2013; Melendez, 2014; Hawkes et al. 2015). The same observation is made 
regarding the static stiffness characteristics of rocks.  

Rocks can also be anisotropic. This generally results from a layering of mineral grains, fractures, 
and/or differential stresses in bedded rock masses. In anisotropic medium, seismic waves propagate 
in different directions with different velocities. Based on this fact, it would be expected that after 
triggering a seismic source in an anisotropic formation, shear waves will propagate faster in the 
direction of the maximum in-situ stress and slower in the direction of the minimum in-situ stress. 
Using measured shear wave velocities, the elastic stiffness constants can be determined. By replacing 
the field-calculated elastic stiffness constants with experimental relations between stress and elastic 
stiffness, the in-situ stresses can be determined. Furthermore, the fastest shear velocity is in the 
direction of the maximum stress, allowing the orientation of the in-situ stress to be determined as 
well. The following relationship exists between applied stress and strain in elastic materials: 

-1413-



 𝜎𝜎𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘 (1) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 , 𝜎𝜎𝑖𝑖𝑖𝑖, and 𝜀𝜀𝑘𝑘𝑘𝑘 represent the elastic stiffness constants, stresses, and strains, respectively. 
Building on this, Table 1 presents several equations that relate phase velocities to dynamic elastic 
constants in a medium with transverse isotropic symmetry (TI). This serves as a reasonable 
approximation for rock anisotropy where the medium has an axis of rotational symmetry in which 5 
elastic constants are required to fully describe it. 

Table 1. Elastic stiffness constants, 𝐶𝐶𝑖𝑖𝑖𝑖, for a transverse isotropic medium, where 𝜌𝜌 is the material density and 
𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑠𝑠 are the compressional- and shear-wave velocities, respectively. 

Dynamic Elastic Stiffness Polarization Direction 
𝐶𝐶11 = 𝜌𝜌𝑉𝑉𝑃𝑃2   (Along any n within the xy-plane) 
𝐶𝐶22 = 𝜌𝜌𝑉𝑉𝑃𝑃2   (Same as 𝐶𝐶11) 
𝐶𝐶33 = 𝜌𝜌𝑉𝑉𝑃𝑃2   (Along n=[0, 0, ±1]) 
𝐶𝐶44 = 𝜌𝜌𝑉𝑉𝑠𝑠2   (With polarization [0, 0, ±1] along any n within the xy plane) 
𝐶𝐶44 = 𝐶𝐶55    
𝐶𝐶66 = 𝜌𝜌𝑉𝑉𝑠𝑠2   (With polarization [0, ±1, 0] along n = [±1, 0, 0] or with 

polarization [±1, 0, 0] along n= [0, ±1, 0] ) 

𝐶𝐶13 = 𝐶𝐶11 − 2𝐶𝐶66  
𝐶𝐶12 = 𝜌𝜌𝑉𝑉𝑃𝑃2 − 2𝐶𝐶44 − 𝐶𝐶11 (Along n=�0, ± 1

√2
, ± 1

√2
�or � ± 1

√2
, 0, ± 1

√2
� ) 

3 METHODOLOGY 

A key first step in developing our in-situ stress measurement technique was to conduct laboratory-
scale, proof-of-concept testing. The tests integrate a fiber optic sensor and interrogator with a high 
capacity triaxial loading system. To support these tests, it was necessary to generate a numerical 
workflow and model, which could be used to determine the stress dependence of each of the dynamic 
elastic stiffness moduli comprising the transversely isotropic stiffness tensor for an instrumented rock 
sample. Here, it was assumed that the applied stresses and elastic stiffness constants followed a linear 
relationship under hydrostatic loading, given by: 

 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑎𝑎1𝑖𝑖𝑖𝑖 (𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3) + 𝑎𝑎2𝑖𝑖𝑖𝑖  (2) 

where 𝑎𝑎1𝑖𝑖𝑖𝑖 and 𝑎𝑎2𝑖𝑖𝑖𝑖 represent the slope and intercept, respectively, of the line fitted to the 
experimental data.  

These relations were used as input for a 3-D numerical model developed in Itasca Consulting 
Group’s FLAC3DTM to simulate seismic wave propagation within a rock sample subjected to 
hydrostatic loading inside the triaxial cell. It was assumed that seismic waves were recorded by a 
fiber optic sensor cemented inside a central hole drilled into the rock sample. It was also assumed 
that the fiber optic sensor was helically wrapped (at a 30-degree angle) to increase its broadside 
sensitivity. The model geometry and boundary conditions are shown in Figure 1.  

In this numerical model, seismic energy was emitted by a point source located on the exterior 
surface of the rock sample, close to its bottom. To record the response of the fiber optic sensor, a 
number of virtual points were defined as an array of gauges along the length of the sensor. In order 
to minimize the reflections from the model boundary, a quiet boundary was used (see Figure 1). The 
results of the stimulation were then assessed and verified against results generated using an analytical 
solution.  
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Figure 1. FLAC3DTM model geometry to simulate fiber-optic stress measurement testing condition. The 

different domains are identified by the different colors. The model is surrounded by quiet boundary 
conditions. The location of the seismic point source is shown with a star. 

4 RESULTS 

Dynamic elastic stiffness constants (𝐶𝐶𝑖𝑖𝑖𝑖) were calculated based on measured velocities under 
hydrostatic loading. Each elastic constant was plotted against the mean stress and a trendline fitted 
through the data points. Table 2 lists the linear trendline parameters for each elastic constant. 

Figures 2 shows an example from the numerical modeling results simulating the response of the 
fiber optic sensor under hydrostatic loading. Figure 2a shows the generation of the waveforms from 
the point source towards the sensor located at the center of the rock sample. Figure 2b illustrates the 
modeled waveforms recorded by the sensor. The shear wave velocity calculated from the stimulation 
closely matches the experimental results. The seismic energy reached the sensor at approximately 2 
milliseconds, as seen in the recorded waveforms. When this wave reaches the other side of the cable-
cement interface, some energy is reflected back in the sensor as a result of the contrast in material 
properties between the two domains. 

Table 2. Input parameters used for the numerical analysis and verification exercise. 

Dynamic Elastic Stiffness Constants of Rock Sample 
 𝑎𝑎1(-) 𝑎𝑎2(GPa) 
𝐶𝐶11 64.30 58.75 
𝐶𝐶33 245.43 32.48 
𝐶𝐶44(= 𝐶𝐶55) 228.55 19.84 
𝐶𝐶66 16.41 22.76 
𝐶𝐶12(= 𝐶𝐶21) 28.22 13.33 
𝐶𝐶13(= 𝐶𝐶23) 108.86 9.70 

Static Elastic Properties 
𝜌𝜌 (kg m3⁄ ) 𝐺𝐺𝑣𝑣(GPa) 𝐸𝐸𝑣𝑣(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐸𝐸ℎ(𝐺𝐺𝐺𝐺𝐺𝐺) 𝜗𝜗𝑣𝑣(−) 𝜗𝜗ℎ(−) 

2600 7.1 15.4 31.2 0.2 0.08 
Cement Properties 

Density (kg m3⁄ ) Shear Modulus (GPa) Bulk Modulus (GPa) 
2240 6.3 8.3 

Cable Properties 
Density (kg m3⁄ ) Shear Modulus (GPa) Bulk Modulus (GPa) 

1200 0.7 0.8 
Hydrostatic Loading (MPa) Seismic Source 

30 Dominant Frequency (Hz) Amplitude (MPa/s) 
8000 5 

Geometry 
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Rock Cement Cable 
Height(mm) Diameter(mm) Height(mm) Diameter(mm) Height(mm) Diameter(mm) 

152 76 152 50 152 25 

 
Figure 2. a) Propagation of the simulated seismic wave, from its point source to the fiber optic sensor as a 

function of different time steps. b) The waveforms recorded by the sensor in the middle of the rock sample. 

5 FUTURE WORK 

The next steps in our work will make use of the verified numerical model to optimize the work flow 
and validate it against field measured data. This motivates an inverse problem written as: 

 𝐹𝐹𝐹𝐹𝑖𝑖 [𝑚𝑚] +  𝑁𝑁𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑖𝑖 (3) 

where FS is the forward simulation operator (i.e., the numerical simulation incorporating relevant 
physical properties, physical equations and sources properties), m is a generic symbol for the 
inversion model, N is the noise, which is often assumed to have known statistics, and OD is the 
observed data. The goal is to recover the magnitude of the in-situ stresses, m. Finding a model based 
solely on data is an ill-posed problem because there is no unique solution. Additional information 
must be included based on prior knowledge and assumptions, for example those related to 
temperature, the seismic source property and anisotropy orientation. These are then updated/modified 
during the inversion to obtain optimal responses. Defining and solving a well-posed inverse problem 
is a complex task that requires many components that must interact. Viewing this task as a workflow 
in which various elements are explicitly identified and integrated is advantageous. Figure 3 shows 
the inversion methodology, which includes inputs, implementation, and evaluation. 

 
Figure 3. Workflow of inversion for estimating in-situ stress from measured shear wave velocities. 
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6 CONCLUSIONS 

A numerical modeling workflow was developed to enable the calculation of the response of a fiber 
optic sensor cemented within a rock sample to a seismic source under different loading conditions. 
The results of the simulation compare favorably with estimated values based on analytical solutions 
and experimental results. As such, it was concluded that the workflow is effective and appropriate to 
serve as a means to advance inversions to derive in-situ stress information from distributed fiber 
optic field-scale sensing measurements and data. The inversion method will be used to optimize the 
workflow by comparing the seismic stimulation results against the field data and updating the 
assumptions and unknowns.  

The validated workflow will aid in the advancement of a novel stress measurement technique 
which differs from available techniques as follows: i) provides both the stress magnitudes and 
orientations in one measurement (some techniques require multiple measurements); ii) non-
destructive measurement technique (i.e., measurement can be repeated for added precision and 
confidence); iii) measures stress state for a large volume of rock (i.e., is less susceptible to misleading 
measurements due to rock mass heterogeneity); and iv) can be used to measure a stress profile along 
a borehole, and through repeat surveys, stress changes over time. 
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