
ABSTRACT: In this study, we propose a parallelization scheme for the fully implicit Discontinuous 
Deformation Analysis (FI-DDA) to establish an accurate and efficient numerical method for the 
dynamic stability analysis of rock slopes. Specifically, a parallel iterative linear equation solver was 
newly introduced to the FI-DDA, and then, efficient contact detection and contact stiffness matrix 
assembly algorithms suitable for parallel processing were proposed and introduced to the FI-DDA. 
The analysis code was parallelized with OpenMP and the performance of the developed method was 
verified by simulating a centrifugal model shaking table experiment of discontinuous rock slope. 
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1 BACKGROUND AND PURPOSE OF THIS STUDY 

The seismic safety of rock slopes around nuclear power plants in Japan has been evaluated by limit 
equilibrium method based on the stress state obtained by equivalent linear analysis using the finite 
element method (The Japan Electric Association, 2016). Recently, however, there has been a need to 
evaluate the dynamic behavior of collapsed rock masses and the residual displacement as the input 
earthquake and ground motion levels used in the design increase. 

One method for assessing the dynamic behaviors of discontinuous rock masses is Discontinuous 
Deformation Analysis (DDA), an implicit type discontinuum-based numerical method for elastic 
block systems (Shi & Goodman, 1989). The DDA has been widely used in the rock engineering field. 
However, it has been reported that when performing seismic response analysis with the DDA, it is 
difficult to find proper parameters to obtain an accurate solution (Koyama et al., 2009). 

Hashimoto et al. (2021) pointed out that the updating algorithm of the friction between the blocks 
in the original DDA overestimates the friction force and induces computational instability, and 
developed a fully implicit DDA (hereafter, FI-DDA) incorporating an implicit friction updating 
method (return mapping algorithm), that enables robust and accurate analysis of the sliding behaviors 
along the joints. On the other hand, the FI-DDA has a disadvantage in computational efficiency. 
Since the return mapping procedure causes residuals in the equilibrium of the entire system due to 
the correction of friction forces, the Newton-Raphson iteration was also introduced (Fig. 1). While  
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Figure 1. Flowchart of fully implicit DDA. 

this allows for more accurate analysis with larger time increments than the original DDA, it increases 
the computational cost per time step. The increase in overall computation time is significant 
especially when a large rock slope with many blocks is analyzed. 

Therefore, in the present study, we propose a parallelization scheme for the FI-DDA to establish 
an accurate and efficient method for the dynamic stability evaluation of rock slopes. A parallel 
iterative linear equation solver was newly introduced to the FI-DDA, and then, an efficient contact 
search and contact stiffness matrix assembling algorithms were proposed and implemented. The 
analysis code was parallelized using Open Multi-Processing (OpenMP), and the performance of the 
developed method was verified by simulating a series of centrifugal model shaking table experiments 
of a jointed rock slope. 

2 OVERVIEW OF THE DEVELOPED METHOD 

2.1 Theoretical Overview of Fully Implicit DDA 

The DDA is an implicit type method for discontinue that analyzes the dynamic behaviors of a block 
system by solving the equations of motion for the whole analytical domain considering the friction. 
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Where [𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖,𝑚𝑚 = 1, 2, … , 𝑛𝑛) is a 6 × 6 matrix, and {∆𝑑𝑑𝑖𝑖} and {𝐹𝐹𝑖𝑖} are 6-component vectors. A 
diagonal submatrix [𝐾𝐾𝑖𝑖𝑖𝑖] includes the mass and elastic stiffness of the block Ωi, and the contact 
stiffness term when a contact with other block exists, and[𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖 ≠ 𝑚𝑚) is a submatrix appears only 
when the blocks Ωi and Ωm contact each other. {∆𝑑𝑑𝑖𝑖} is the unknown variables vector for the block 
Ωi including the translation, rotation, and strain components of the block. {𝐹𝐹𝑖𝑖}  is the residual force 
vector consisting of the external, internal, and contact forces. Though both the original and FI-DDA 
construct and solve the equation of this form, the stiffness matrix has different characteristics. 

The common feature between the stiffness matrix of the original DDA and that of the FI-DDA is 
that the submatrices at non-diagonal position (i.e., [𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖 ≠ 𝑚𝑚)) appear only when the block pair 
is in contact and is zero otherwise. Therefore, the stiffness matrix is generally sparse, and the linear 
equation solver suitable for sparse stiffness matrices is needed to solve Eq. (1). The differences 
appear when the sliding between the blocks occurs. In the original DDA, since the contact stiffness 
matrix's shear component is removed after the sliding starts, the stiffness matrix is always symmetric. 
On the other hand, in the FI-DDA, the linearization of the friction force is considered to achieve the 
quadratic convergence of the Newton-Raphson iteration, and consequently, the stiffness matrix 
becomes asymmetric when the sliding occurs. Therefore, FI-DDA requires a linear equation solver 
for asymmetric stiffness matrices. 
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Fig. 1 shows the calculation flow of the FI-DDA. As mentioned earlier, the introduction of the 
Newton-Raphson iteration in the FI-DDA increases the computational time per step because the 
linear equation is constructed and solved iteratively. Therefore, a parallel iterative linear equation 
solver for asymmetric matrix and an efficient matrix construction/assembling algorithm are needed 
for more efficient computation. In addition, the computational cost of the contact detection is high 
among other items as same as in the original DDA, that means development of an efficient 
parallelization scheme for the contact detection is also a key for the fast computation. 

2.2 Parallelization Scheme for Fully Implicit DDA 

2.2.1 Outline of Parallel Computing 

Parallel computing is the process of dividing independent processes within a program's algorithm 
into multiple computing devices within a CPU (Central Processing Unit) or GPU (Graphics 
Processing Unit) and executing them simultaneously to speed up the process. In the original DDA, 
Yu et al. (2020) have succeeded in reducing analysis execution time using OpenMP, which generates 
processing units called threads on multiple CPU cores and executes them in parallel. Based on this, 
thread parallelization with OpenMP was determined to be effective for full implicit DDA in this 
study and was adopted. However, the parallelization scheme shown below is applicable also for other 
parallel programming models, e.g. MPI (Message Passing Interface) and GPGPU. 

2.2.2 Introduction of Iterative Linear Equation Solver and Its Parallelization 

Yu et al. (2020) used the Jacobi Preconditioned Conjugate Gradient (JPCG) method, an iterative 
solver for positive definite symmetric matrices for the parallelization of the original DDA. On the 
other hand, in the FI-DDA, the stiffness matrix of the linear equations is asymmetric, so the JPCG 
method cannot be used. For this reason, the FI-DDA has used Intel® oneAPI Math Kernel Library 
PARDISO, a direct solver for sparse matrices. However, the direct solver requires more memory and 
operations to solve the problem than the iterative method, and its applicability to large-scale 
calculations is relatively poor. Therefore, in this study, the Bi-Conjugate Gradient Stabilized 
(BiCGSTAB) method, which is an iterative solver for asymmetric matrices was newly implemented 
together with the Jacobi preconditioner. 

The most part of the BiCGSTAB method consists of the sparse matrix-vector products (SpMV), 
and inner products of the vectors. While the SpMV can be easily parallelized, the inner product 
calculations are not straightforward. In parallel processing of the inner product computation, the inner 
product in each component of a vector is first computed in each thread, and finally, the results of 
each thread's computation are summed. Therefore, an exclusion process is required when summing, 
but the exclusion control tends to degrade parallel performance due to synchronous processing. In 
addition, the adding order of the computed results by each thread differs depending on the number 
of parallel threads, which causes the changes in the calculation results due to the round-off errors. In 
such cases, the analyses with different numbers of threads are required to check the validity of the 
simulated results, and the speed-up advantage of parallel computation will be lost. 

Therefore, this study parallelizes the inner product calculation by the following procedure. First, 
the vector is divided into k sections in advance (k has the number of parallel threads as a common 
divisor). Then the inner product for each section is calculated in parallel. Finally, the computed 
results for each section are summed up in the order of the original vectors. Since the order of 
summing is the same when the number of threads is changed, the calculation results do not change 
depending on them. 

2.2.3 Parallelization of Contact Detection Procedures 

In the DDA, a contact between a block pair occurs when a vertex of a polygonal block penetrates 
into an edge of another block. Therefore, at the beginning of each time step, the contact detection  
procedures to search potential vertex-edge pairs (hereafter referred to as "contact pairs") that are 
likely to contact during the time step are conducted. Fig. 2 shows the pseudocode after parallelization.  
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Figure 2. Parallel pseudocode of the contact detection process. 

 
Figure 3. Parallel pseudocode of the constructing stiffness matrices and vectors for contact. 

The contact detection s performed in two steps, the detections based on the inter-block distance (part 
1) and the block posture (Part 2). The details for each step are shown below. 

The contact detection based on the inter-block distance is processed by a round-robin method 
among all the blocks. Firstly, the block pairs located closer than the threshold is searched using the 
maximum and minimum coordinates in x- and y-directions of each block (Part 1-1). Then, if the 
blocks are sufficiently close, the distance for all vertex-edge pairs between the blocks is computed 
(Part 1-2), and the vertex-edge pairs whose distance is less than the threshold are stored as the 
potential contact pairs (Part 1-3). The detection process for each block pair is independent and 
parallelizable. However, since the processes in Part 1-2 and 1-3 are conducted only for the block 
pairs that satisfied the threshold in Part 1-1, simple parallelization for Ωi causes an imbalance in 
computational load between the threads, resulting in a significant loss of parallelization efficiency. 
Therefore, we added a balancing process of the computational load in this study. Based on the number 
of potential contact pairs for each block at the previous time step, the total computational load is 
estimated. Then, the iterations for Ωi are divided and assigned to the parallel threads so that the 
computational load is equalized among the threads. 

The posture-based detection is easily parallelized because it can be performed independently for 
the potential contact pairs that have been already detected by the inter-block distance. 

2.2.4 Parallel Construction of Contact Stiffness Matrices and Contact Force Vectors  

In the FI- DDA, the contact stiffness matrix, and contact force vector are calculated for each contact 
pair detected by the contact detection, and then assembled to the global stiffness equation (Eq. (1)). 
The parallelization of the matrices and vectors computation is straightforward; however, the 
assembling process needs a special treatment. If a block has multiple contact points assigned to 
different threads, concurrent access from the several threads to the same contact stiffness term (or 
memory address) may occur. This means that an exclusion procedure is required for the assembling 
process. However, as mentioned earlier, the exclusive control may degrade parallelization efficiency. 

In contrast, this study proposes a new algorithm for the computation and assemblage of contact 
terms (Fig. 3). First, for each block Ωi, the indices to the contact pairs involving Ωi in the contact 
pair list obtained by the contact detection are made. Then, the contact stiffness matrices and contact 
force vectors are calculated and assembled by an iteration with respect to the blocks. Since the 
memory address of the matrices and vectors are independent for each block, this process can be easily 
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parallelized without exclusion control. For efficient parallelization, the iteration over Ωi is divided 
and assigned to the threads considering the number of contact pairs for each block so that the 
computational load is equalized among the threads. 

3 VALIDATION OF THE DEVELOPED METHOD 

Simulations of a series of centrifugal model shaking table experiments of a rock slope model were 
conducted to verify the applicability and parallel performance of the developed method (Naya et al.,  
2022). In the experiment, a jointed rock slope is modeled by stacking 2081 stainless steel hexagonal 
bars, and the model was shaken in 14 steps with varying maximum acceleration amplitude at a 
centrifugal acceleration of 25 G. In the simulations, all hexagonal bars and the shaking frame were 
modeled as DDA blocks (Fig. 4), and the acceleration in Steps 3-14 (excluding white noise shaking) 
was input to the frame in a series of steps (Fig. 5). The physical properties and analytical parameters 
of the block were determined referring to Hashimoto & Koyama (2022) as follows: density: 8.0 cm3, 
Young's modulus: 200 GPa, Poisson's ratio: 0.3, time increment: 0.00005 s, tolerable residual (energy 
norm) for Newton-Raphson: 1.0×10-15, and allowable residual norm for BiCGSTAB:  1.0×10-15. In 
addition, to verify the performance of the developed method, we performed five analyses under the 
same conditions, one using the conventional FI-DDA using a direct solver PARDISO (hereinafter 
referred to as the previous method) without parallelization and the other using the developed method 
with the number of threads varied from 1 to 4. All the computation is performed on a Supermicro 
computer, powered by the Intel® Core Xeon® CPU E5-2687W with a clock rate of 3.10 GHz. 

Fig. 6 shows the slope profiles after shaking steps 11-14. The results of the developed method 
and the previous method are not identical exactly due to the error of the iterative solver. However, 
the validity of the developed method was confirmed by the fact that in both the experiment and 
analysis, the collapse began at the top of the slope from step 12 and then progressed to the right. 

Fig. 7 shows the execution time for the previous method with PARDISO and the developed 
method with BiCGSTAB method without parallelization (i.e., single thread). The figure shows that 
the introduction of the iterative BiCGSTAB method resulted in a significant reduction of execution 
time for the equation solving part compared to the previous method with the direct solver. Therefore, 
the speedup by the introduction of BiCGSTAB was confirmed. 

Fig. 8 shows the speed up ratio by the parallelization in the developed method. The figure shows 
that the developed method speeds up as the number of threads increases. Especially for the equation 
solver, the contact detection, and the construction of the contact stiffness and contact force terms, 
speed up over three times was achieved with 4 threads. The reason why the speed up ratio of others 
is relatively low is that it includes procedures that are difficult to parallelize due to their high 
information dependence, such as the output of the computed results. 

Fig. 9 compares the total execution time by the previous and developed methods (1~4 threads) 
and the speed up ratio by parallelization. The developed method completed the analysis in 13.6 hours  
with 1 thread, more than twice as fast as the previous method, which took about 31.1 hours to 
complete the analysis. In addition, the parallel execution of the developed method successfully  
accelerated the computation. Specifically, the analysis was completed in approximately 4.5 hours 
with 4 threads, which is 6.9 times faster than the previous method. 

 
Figure 4. Analysis model and contact parameters.                        Figure 5. Input acceleration. 
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Figure 6. Changes in slope profile.     Figure 7. Comparison of execution time between the linear  

                                               solvers. 

    
Figure 8. Speed up ratio for each part.      Figure 9. Comparison of total execution time. 

4 CONCLUSION 

In this study, we proposed a new parallelization scheme for the FI-DDA and developed the 
parallelized code using OpenMP. When the developed method was applied to the simulation of the 
centrifugal shaking table experiment, the execution time was significantly reduced compared to the 
previous method while reproducing the experimental results. Therefore, it was successfully shown 
that the developed method can analyze a large-scale rock slope with high accuracy and efficiency. 
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