
ABSTRACT: In this study, we propose a parallelization scheme for the fully implicit Discontinuous
Deformation Analysis (FI-DDA) to establish an accurate and efficient numerical method for the
dynamic stability analysis of rock slopes. Specifically, a parallel iterative linear equation solver was
newly introduced to the FI-DDA, and then, efficient contact detection and contact stiffness matrix
assembly algorithms suitable for parallel processing were proposed and introduced to the FI-DDA.
The analysis code was parallelized with OpenMP and the performance of the developed method was
verified by simulating a centrifugal model shaking table experiment of discontinuous rock slope.

Keywords: DDA, OpenMP, rock slope, parallelization.

1 BACKGROUND AND PURPOSE OF THIS STUDY

The seismic safety of rock slopes around nuclear power plants in Japan has been evaluated by limit
equilibrium method based on the stress state obtained by equivalent linear analysis using the finite
element method (The Japan Electric Association, 2016). Recently, however, there has been a need to
evaluate the dynamic behavior of collapsed rock masses and the residual displacement as the input
earthquake and ground motion levels used in the design increase.

One method for assessing the dynamic behaviors of discontinuous rock masses is Discontinuous
Deformation Analysis (DDA), an implicit type discontinuum-based numerical method for elastic
block systems (Shi & Goodman, 1989). The DDA has been widely used in the rock engineering field.
However, it has been reported that when performing seismic response analysis with the DDA, it is
difficult to find proper parameters to obtain an accurate solution (Koyama et al., 2009).

Hashimoto et al. (2021) pointed out that the updating algorithm of the friction between the blocks
in the original DDA overestimates the friction force and induces computational instability, and
developed a fully implicit DDA (hereafter, FI-DDA) incorporating an implicit friction updating
method (return mapping algorithm), that enables robust and accurate analysis of the sliding behaviors
along the joints. On the other hand, the FI-DDA has a disadvantage in computational efficiency.
Since the return mapping procedure causes residuals in the equilibrium of the entire system due to
the correction of friction forces, the Newton-Raphson iteration was also introduced (Fig. 1). While

15th ISRM Congress 2023 & 72nd Geomechanics Colloquium. Schubert & Kluckner (eds.) © ÖGG

Development of an efficient parallelization scheme for fully
implicit discontinuous deformation analysis (dda)

Tatsuki Tokuda
Hiroshima University, Hiroshima, Japan

Ryota Hashimoto
Kyoto University, Kyoto, Japan

-1858-

Figure 1. Flowchart of fully implicit DDA.

this allows for more accurate analysis with larger time increments than the original DDA, it increases
the computational cost per time step. The increase in overall computation time is significant
especially when a large rock slope with many blocks is analyzed.

Therefore, in the present study, we propose a parallelization scheme for the FI-DDA to establish
an accurate and efficient method for the dynamic stability evaluation of rock slopes. A parallel
iterative linear equation solver was newly introduced to the FI-DDA, and then, an efficient contact
search and contact stiffness matrix assembling algorithms were proposed and implemented. The
analysis code was parallelized using Open Multi-Processing (OpenMP), and the performance of the
developed method was verified by simulating a series of centrifugal model shaking table experiments
of a jointed rock slope.

2 OVERVIEW OF THE DEVELOPED METHOD

2.1 Theoretical Overview of Fully Implicit DDA

The DDA is an implicit type method for discontinue that analyzes the dynamic behaviors of a block
system by solving the equations of motion for the whole analytical domain considering the friction.

 �

[𝐾𝐾11] [𝐾𝐾12] ⋯ [𝐾𝐾1𝑛𝑛]
[𝐾𝐾21] [𝐾𝐾22] ⋯ [𝐾𝐾2𝑛𝑛]
⋮ ⋮ ⋱ ⋮

[𝐾𝐾𝑛𝑛1] [𝐾𝐾𝑛𝑛2] ⋯ [𝐾𝐾𝑛𝑛𝑛𝑛]

��

{∆𝑑𝑑1}
{∆𝑑𝑑2}
⋮

{∆𝑑𝑑𝑛𝑛}

� = �

{𝐹𝐹1}
{𝐹𝐹2}
⋮

{𝐹𝐹𝑛𝑛}

� (1)

Where [𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖,𝑚𝑚 = 1, 2, … , 𝑛𝑛) is a 6 × 6 matrix, and {∆𝑑𝑑𝑖𝑖} and {𝐹𝐹𝑖𝑖} are 6-component vectors. A
diagonal submatrix [𝐾𝐾𝑖𝑖𝑖𝑖] includes the mass and elastic stiffness of the block Ωi, and the contact
stiffness term when a contact with other block exists, and[𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖 ≠ 𝑚𝑚) is a submatrix appears only
when the blocks Ωi and Ωm contact each other. {∆𝑑𝑑𝑖𝑖} is the unknown variables vector for the block
Ωi including the translation, rotation, and strain components of the block. {𝐹𝐹𝑖𝑖} is the residual force
vector consisting of the external, internal, and contact forces. Though both the original and FI-DDA
construct and solve the equation of this form, the stiffness matrix has different characteristics.

The common feature between the stiffness matrix of the original DDA and that of the FI-DDA is
that the submatrices at non-diagonal position (i.e., [𝐾𝐾𝑖𝑖𝑖𝑖](𝑖𝑖 ≠ 𝑚𝑚)) appear only when the block pair
is in contact and is zero otherwise. Therefore, the stiffness matrix is generally sparse, and the linear
equation solver suitable for sparse stiffness matrices is needed to solve Eq. (1). The differences
appear when the sliding between the blocks occurs. In the original DDA, since the contact stiffness
matrix's shear component is removed after the sliding starts, the stiffness matrix is always symmetric.
On the other hand, in the FI-DDA, the linearization of the friction force is considered to achieve the
quadratic convergence of the Newton-Raphson iteration, and consequently, the stiffness matrix
becomes asymmetric when the sliding occurs. Therefore, FI-DDA requires a linear equation solver
for asymmetric stiffness matrices.

Construct stiffness matrix
and right-hand side vector

Update configuration,
stress and strain of blocks

Contact status and contact force updates
using return mapping algorithm

Solve simultaneous equation

No Final time step?

Yes

Finish

Input dataStart
Contact detection

Open-Close iteration

Yes

Time increment

Newton-Raphson method iteration No

Main target of parallelization

Convergence of
Newton-Raphson

-1859-

Fig. 1 shows the calculation flow of the FI-DDA. As mentioned earlier, the introduction of the
Newton-Raphson iteration in the FI-DDA increases the computational time per step because the
linear equation is constructed and solved iteratively. Therefore, a parallel iterative linear equation
solver for asymmetric matrix and an efficient matrix construction/assembling algorithm are needed
for more efficient computation. In addition, the computational cost of the contact detection is high
among other items as same as in the original DDA, that means development of an efficient
parallelization scheme for the contact detection is also a key for the fast computation.

2.2 Parallelization Scheme for Fully Implicit DDA

2.2.1 Outline of Parallel Computing

Parallel computing is the process of dividing independent processes within a program's algorithm
into multiple computing devices within a CPU (Central Processing Unit) or GPU (Graphics
Processing Unit) and executing them simultaneously to speed up the process. In the original DDA,
Yu et al. (2020) have succeeded in reducing analysis execution time using OpenMP, which generates
processing units called threads on multiple CPU cores and executes them in parallel. Based on this,
thread parallelization with OpenMP was determined to be effective for full implicit DDA in this
study and was adopted. However, the parallelization scheme shown below is applicable also for other
parallel programming models, e.g. MPI (Message Passing Interface) and GPGPU.

2.2.2 Introduction of Iterative Linear Equation Solver and Its Parallelization

Yu et al. (2020) used the Jacobi Preconditioned Conjugate Gradient (JPCG) method, an iterative
solver for positive definite symmetric matrices for the parallelization of the original DDA. On the
other hand, in the FI-DDA, the stiffness matrix of the linear equations is asymmetric, so the JPCG
method cannot be used. For this reason, the FI-DDA has used Intel® oneAPI Math Kernel Library
PARDISO, a direct solver for sparse matrices. However, the direct solver requires more memory and
operations to solve the problem than the iterative method, and its applicability to large-scale
calculations is relatively poor. Therefore, in this study, the Bi-Conjugate Gradient Stabilized
(BiCGSTAB) method, which is an iterative solver for asymmetric matrices was newly implemented
together with the Jacobi preconditioner.

The most part of the BiCGSTAB method consists of the sparse matrix-vector products (SpMV),
and inner products of the vectors. While the SpMV can be easily parallelized, the inner product
calculations are not straightforward. In parallel processing of the inner product computation, the inner
product in each component of a vector is first computed in each thread, and finally, the results of
each thread's computation are summed. Therefore, an exclusion process is required when summing,
but the exclusion control tends to degrade parallel performance due to synchronous processing. In
addition, the adding order of the computed results by each thread differs depending on the number
of parallel threads, which causes the changes in the calculation results due to the round-off errors. In
such cases, the analyses with different numbers of threads are required to check the validity of the
simulated results, and the speed-up advantage of parallel computation will be lost.

Therefore, this study parallelizes the inner product calculation by the following procedure. First,
the vector is divided into k sections in advance (k has the number of parallel threads as a common
divisor). Then the inner product for each section is calculated in parallel. Finally, the computed
results for each section are summed up in the order of the original vectors. Since the order of
summing is the same when the number of threads is changed, the calculation results do not change
depending on them.

2.2.3 Parallelization of Contact Detection Procedures

In the DDA, a contact between a block pair occurs when a vertex of a polygonal block penetrates
into an edge of another block. Therefore, at the beginning of each time step, the contact detection
procedures to search potential vertex-edge pairs (hereafter referred to as "contact pairs") that are
likely to contact during the time step are conducted. Fig. 2 shows the pseudocode after parallelization.

-1860-

Figure 2. Parallel pseudocode of the contact detection process.

Figure 3. Parallel pseudocode of the constructing stiffness matrices and vectors for contact.

The contact detection s performed in two steps, the detections based on the inter-block distance (part
1) and the block posture (Part 2). The details for each step are shown below.

The contact detection based on the inter-block distance is processed by a round-robin method
among all the blocks. Firstly, the block pairs located closer than the threshold is searched using the
maximum and minimum coordinates in x- and y-directions of each block (Part 1-1). Then, if the
blocks are sufficiently close, the distance for all vertex-edge pairs between the blocks is computed
(Part 1-2), and the vertex-edge pairs whose distance is less than the threshold are stored as the
potential contact pairs (Part 1-3). The detection process for each block pair is independent and
parallelizable. However, since the processes in Part 1-2 and 1-3 are conducted only for the block
pairs that satisfied the threshold in Part 1-1, simple parallelization for Ωi causes an imbalance in
computational load between the threads, resulting in a significant loss of parallelization efficiency.
Therefore, we added a balancing process of the computational load in this study. Based on the number
of potential contact pairs for each block at the previous time step, the total computational load is
estimated. Then, the iterations for Ωi are divided and assigned to the parallel threads so that the
computational load is equalized among the threads.

The posture-based detection is easily parallelized because it can be performed independently for
the potential contact pairs that have been already detected by the inter-block distance.

2.2.4 Parallel Construction of Contact Stiffness Matrices and Contact Force Vectors

In the FI- DDA, the contact stiffness matrix, and contact force vector are calculated for each contact
pair detected by the contact detection, and then assembled to the global stiffness equation (Eq. (1)).
The parallelization of the matrices and vectors computation is straightforward; however, the
assembling process needs a special treatment. If a block has multiple contact points assigned to
different threads, concurrent access from the several threads to the same contact stiffness term (or
memory address) may occur. This means that an exclusion procedure is required for the assembling
process. However, as mentioned earlier, the exclusive control may degrade parallelization efficiency.

In contrast, this study proposes a new algorithm for the computation and assemblage of contact
terms (Fig. 3). First, for each block Ωi, the indices to the contact pairs involving Ωi in the contact
pair list obtained by the contact detection are made. Then, the contact stiffness matrices and contact
force vectors are calculated and assembled by an iteration with respect to the blocks. Since the
memory address of the matrices and vectors are independent for each block, this process can be easily

Thread computation equalization operation by number of contacts in previous step
#pragma omp parallel
#pragma omp for
for each block
for each block
Part 1-1: Calculate distance between blocks to detect possible contact
if (distance below threshold)
Part 1-2: Calculate the distance between the vertex of one block and the edge of the other block to detect possible contact
if (distance below threshold)
Part 1-3: Record vertex/edge pairs
Part 1-4: Count and store the number of potential contacts

#pragma omp for
for each contact potential
Part 2: Detect contacts by block posture in detail

Determine contact pairs

Thread computation equalization operation by contact pairs
#pragma omp parallel for

for each block
Compute intermediate variables
Add terms to and

-1861-

parallelized without exclusion control. For efficient parallelization, the iteration over Ωi is divided
and assigned to the threads considering the number of contact pairs for each block so that the
computational load is equalized among the threads.

3 VALIDATION OF THE DEVELOPED METHOD

Simulations of a series of centrifugal model shaking table experiments of a rock slope model were
conducted to verify the applicability and parallel performance of the developed method (Naya et al.,
2022). In the experiment, a jointed rock slope is modeled by stacking 2081 stainless steel hexagonal
bars, and the model was shaken in 14 steps with varying maximum acceleration amplitude at a
centrifugal acceleration of 25 G. In the simulations, all hexagonal bars and the shaking frame were
modeled as DDA blocks (Fig. 4), and the acceleration in Steps 3-14 (excluding white noise shaking)
was input to the frame in a series of steps (Fig. 5). The physical properties and analytical parameters
of the block were determined referring to Hashimoto & Koyama (2022) as follows: density: 8.0 cm3,
Young's modulus: 200 GPa, Poisson's ratio: 0.3, time increment: 0.00005 s, tolerable residual (energy
norm) for Newton-Raphson: 1.0×10-15, and allowable residual norm for BiCGSTAB: 1.0×10-15. In
addition, to verify the performance of the developed method, we performed five analyses under the
same conditions, one using the conventional FI-DDA using a direct solver PARDISO (hereinafter
referred to as the previous method) without parallelization and the other using the developed method
with the number of threads varied from 1 to 4. All the computation is performed on a Supermicro
computer, powered by the Intel® Core Xeon® CPU E5-2687W with a clock rate of 3.10 GHz.

Fig. 6 shows the slope profiles after shaking steps 11-14. The results of the developed method
and the previous method are not identical exactly due to the error of the iterative solver. However,
the validity of the developed method was confirmed by the fact that in both the experiment and
analysis, the collapse began at the top of the slope from step 12 and then progressed to the right.

Fig. 7 shows the execution time for the previous method with PARDISO and the developed
method with BiCGSTAB method without parallelization (i.e., single thread). The figure shows that
the introduction of the iterative BiCGSTAB method resulted in a significant reduction of execution
time for the equation solving part compared to the previous method with the direct solver. Therefore,
the speedup by the introduction of BiCGSTAB was confirmed.

Fig. 8 shows the speed up ratio by the parallelization in the developed method. The figure shows
that the developed method speeds up as the number of threads increases. Especially for the equation
solver, the contact detection, and the construction of the contact stiffness and contact force terms,
speed up over three times was achieved with 4 threads. The reason why the speed up ratio of others
is relatively low is that it includes procedures that are difficult to parallelize due to their high
information dependence, such as the output of the computed results.

Fig. 9 compares the total execution time by the previous and developed methods (1~4 threads)
and the speed up ratio by parallelization. The developed method completed the analysis in 13.6 hours
with 1 thread, more than twice as fast as the previous method, which took about 31.1 hours to
complete the analysis. In addition, the parallel execution of the developed method successfully
accelerated the computation. Specifically, the analysis was completed in approximately 4.5 hours
with 4 threads, which is 6.9 times faster than the previous method.

Figure 4. Analysis model and contact parameters. Figure 5. Input acceleration.

Metal hexagonal bar lamination

390 mm (65 bottles)

152.4 mm
(29 steps)

474 mm (79 bottles)300 mm

350 m
m

10 m
m

Shaking frame Fixing to shaking table

Number of blocks : 2083
(Including the frame)
Degree of freedom : 12498

Normal penalty coefcient： kN/m
Shear penalty coefcient： kN/m

Maximum allowable displacement ratio：
Friction angle of discontinuity ： °

-500
-400
-300
-200
-100

0
100
200
300
400
500

0 1 2 3 4 5 6

Horizontal

Vertical

0

200
300
400

-100

500

100

-300
-400
-500

-200

0 1 2 3 4 5 6
Time [s]

A
cc

el
er

at
io

n
[m

/s
2]

水平加
速度鉛直加
速度

Horizontal acceleration
Vertical acceleration

-1862-

Figure 6. Changes in slope profile. Figure 7. Comparison of execution time between the linear

 solvers.

Figure 8. Speed up ratio for each part. Figure 9. Comparison of total execution time.

4 CONCLUSION

In this study, we proposed a new parallelization scheme for the FI-DDA and developed the
parallelized code using OpenMP. When the developed method was applied to the simulation of the
centrifugal shaking table experiment, the execution time was significantly reduced compared to the
previous method while reproducing the experimental results. Therefore, it was successfully shown
that the developed method can analyze a large-scale rock slope with high accuracy and efficiency.

REFERENCES

Hashimoto, R., Sueoka, T., Koyama, T., Kikumoto, M. 2021: Improvement of discontinuous deformation
analysis incorporating implicit updating scheme of friction and joint strength degradation, Rock Mech.
Rock Eng., Vol. 54, pp. 4239-4263.

Hashimoto, R. & Koyama, T. 2022: Centrifuge testing to dynamic behavior of slope model piled up steel
hexagonal bar simulating discontinuous rock mass (part 13) -Evaluation by improved discontinuous
deformation analysis-, Proc. of the 48th Japanese Symposium on Rock Mechanics, No. 25 (in Japanese).

Koyama, T., Akao, S., Nishiyama, S., Ohnishi, Y. 2009: Earthquake response analysis for rock slope using
Discontinuous Deformation Analysis (DDA), Journal of Japan Society of Civil Engineers C (geotechnical
engineering), Vol. 65 No. 3, pp. 644–662 (in Japanese).

Naya, T., Okada, T. and Sekiguchi, A. 2022: Centrifuge testing to dynamic behavior of slope model piled up
steel hexagonal bar simulating discontinuous rock mass (part 3) -Centrifugal force vibration test of slope
model-, Proc. of the 48th Japanese Symposium on Rock Mechanics, No. 15 (in Japanese).

Shi, G. H. & Goodman, R. E. 1989: Generalization of two-dimensional discontinuous deformation analysis for
forward modeling, Int. J. Numer. Anal. Methods Geomech., Vol. 13, pp. 359–380.

The Japan Electric Association Nuclear Standards Committee. 2016: Technical Guidelines for Seismic Design
of Nuclear Power Plants

Yu, P., Peng, X., Chen, G., Guo, L. and Zhang, Y. 2020: OpenMP-based parallel two-dimensional
discontinuous deformation analysis for large-scale simulation, Int. J. Geomech., Vol. 20(7), pp. 04020083-
1–04020083-14.

Experiment

Step11

Step12

Step13

Step14

Previous
method

Developed
method

0

5

10

15

20

25

30

35

30
25
20
15
10
5
0

Ti
m

e[
h]

Direct method BiCGSTAB

Equation solving
Contact detection
Contact stiffness
Others

35

4

3

0

2

1Sp
ee

d
up

 ra
tio

Thread number

Equation solving
Contact detection
Contact stiffness
Others

1 2 3 4
1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

30

35

1 2 3 4 5

Ti
m

e
[h

]

30

25

20

15

10

5

0
Previous
method

1thread 2threads 3threads 4threads

Previous method

Developed method

Speed up ratio 2.5

Speed
up

ratio

1

2

1.5

3

3.535

-1863-

