
ABSTRACT: Understanding the propagation of Mode I fracture is crucial in rock mechanics since 
this fracture mode is the predominant cause of catastrophic failures in brittle rock-like solids. For 
investigating the mechanisms of rock fracturing, Acoustic Emission (AE) is a widely accepted tool. 
In this paper, various AE parameters, including the number of hits, source location, Rise Angle (RA), 
and Average Frequency (AF) are considered to evaluate the AE characteristics during Mode I 
loading-induced fracturing of basalt. Certain waveform features such as the dominant frequency and 
amplitude distribution are further investigated. Results suggest interesting findings in the changes in 
cumulative hits, source location, and RA at different stages of fracture. The observed trend in peak 
frequencies found in the study, in particular, points to promising future studies. 

Keywords: Mode I Rock Fracture, Acoustic Emission, Source Location, Rise Angle, Average 
Frequency, Dominant Frequency. 

1 INTRODUCTION 

Fracture propagation in brittle rocks is predominantly Mode I, unless there exist pre-existing weak 
surfaces directing the propagating fractures, e.g. as discussed in detail by Fairhurst and Cook (1966) 
and Germanovich, et al. (1994). To capture the failure of rocks at different stress regimes and failure 
modes, including Mode I, Acoustic Emission (AE) has been used extensively in the literature 
(Manthei et al., 2022). Recorded AE events can be evaluated through parametric analysis or 
quantitative/waveform analysis. Several studies of rock fracturing have used AE measurements in 
Cracked Chevron Notched Brazilian Disc (CCNBD) specimens or Semi-Circular Bending (SCB) 
tests (Aggelis et al., 2013; Guo & Wong, 2021; Guo & Zhao, 2022; Nasseri et al., 2006; Yang et al., 
2022). However, the Rise Angle (RA) versus the Average Frequency (AF) relationship during 
fracture evolution has been largely underutilized. To address this gap, CCNBD specimens were 
preferred in this work to evaluate Mode I fracture of basalt, considering that CCNBD specimen 
testing is well-established to obtain Mode I fracture toughness (Serati et al., 2016). Basalt was also 
selected as the preferred rock type since basaltic rock formations have served as foundations for 
several civil infrastructure projects in Australia and worldwide (Jain et al., 2014); including Baihetan, 
Xiluodu and Tongjiezi hydropower stations (Xia et al., 2020), the transfer tunnel of Kaste dam in 
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Lesotho, South Africa (Bell & Haskins, 1997), and in the petroleum industry where oil deposits have 
been discovered in and around basaltic deposits (Huang et al., 2019).  

2 METHODOLOGY 

This study analyzed Mode I fracture propagation in two basalt specimens, B01 and B02, using the 
ISRM CCNBD specimens (Fowell et al., 1995). To make the Chevron notch, a milling machine was 
used with a blade attached to the chuck of the milling machine, and the required displacement was 
achieved by moving the sample towards the blade. Specimens were oven dried at 105° C after the 
Chevron notches were made. Tables 1 and 2 provide the mechanical properties, dimensions, and 
measured fracture toughness for the selected specimens.  
Table 1. Basalt mechanical properties. 

Parameters Value 
Modulus of elasticity  GPa 45.42 ±3.74 
Poison’s ratio  0.24±0.01 
Dry density  kg/m3 2,577±13.05 
Porosity % 7.15±0.16 
Uniaxial Compressive Strength (UCS) MPa 131±3.5 
P-wave velocity  m/s 4,739 ± 23.47 

Figure 1a illustrates the schematics of the tests. Specimens were tested using a 100 kN Instron 4505 
loading frame. The low loading rate of 2kN/m, less than the one suggested by Fowell et al. (1995) 
was chosen to better visualize the fracturing events during the AE data acquisition stage and to ensure 
that synchronization between the loading and AE system was optimized. Ten (10) Mistras Physical 
Acoustics AE sensors (WD-type) with operational frequencies from 100 kHz to 1,000 kHz were 
used. The preamplifier type used was a PreAmp One 5V model with a preamplification of 26 dB.  
The data acquisition (DAQ) system consisted of the two express 8 cards, which recorded the 
waveforms at 16-bit resolution. The waveforms were recorded at a 5 MHz sampling rate. Tests were 
carried out with Automatic Sensor Testing (AST) configuration, an inbuilt function of the AE system 
where the sensors send pulses in a sequence and capture the arrival time of the pulses generated. The 
AST was set to generate five pulses and we selected the minimum threshold at which all the pulses 
were captured by each sensor, which was found to be 50dB. The minimum threshold was selected to 
capture the relevant AE characteristics and to filter noise. Mistras Physical Acoustics “AE Win” 
software was adopted to post-process and acquire AE information. The arrangement of the sensors 
is shown in Figure 1b. Only a 2D analysis of the source location was conducted within the fracture 
plane (see also Figure 1a).  
Table 2. Dimensions and Mode I fracture toughness of the Basalt specimens.  

Specimen D(mm) B(mm) Ds(mm) a0(mm) a1(mm) hc(mm) Pmax(kN) Y*
m KIC(MPa√m) 

B01 99.52 35.64 76 14.02 33.73 20.5 17.3 0.90 1.39 
B02 99.35 38.18 76 10.26 33.73 20.5 18.26 0.87 1.32 
Average 99.44 36.91 - 12.14 - - 17.78 - 1.35 
St. Dev. 0.085 1.27 - 1.88 - - 0.48 - 0.03 

3 RESULTS 

The number of hits is a basic characteristic of AE studies (Moradian et al., 2015; Goodfellow et al., 
2015). The AE counts together with the applied load vs. time plots are shown in Figure 2. It can be 
seen that despite the same loading arrangements for both tests, the AE counts, the time of AE 
commencement, and the start of fracture propagation are different. Furthermore, the counts have ups 
and downs, which are different for the two specimens. This is likely due to rock variability: different 
specimens of the same rock can behave differently. To further investigate the evolution of fracture 
growth, we considered the propagation of source location and how the waveform features change 
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with fracture propagation. The failure load was divided into four parts (in % of the maximum force): 
< 95%, 95–98%, 98–99% and 99–100%. The events were considered if six or more channels were 
triggered (crossed the threshold limit).  

 
                                                (a)                                    (b) 
Figure 1. Schematics of the experiment: (a) the CCNBD basalt samples; (b) the positions of the AE sensors.  

 
Figure 2. Registered and cumulative AE hits (counts) vs. time and the force-time history. 

For source location, a total of 10 sensors were used. But, it should be noted due to the Chevron notch 
being in the middle of the specimens the waves may be attenuated, hence not all 10 channels may be 
triggered. Therefore a minimum of six sensors were chosen to be triggered as a criterion for recording 
the signal. We selected the analysis plane to be at the centre of the predefined Chevron notch (Figure 
1) and the location of the microfracture sources was divided based on the normalized failure load. 
Figure 3, illustrates the new source locations at different normalized force levels, while the previous 
events are greyed out. It is noted that some of the events occur in the seemingly empty space (where 
the predefined crack exists). However, this could be attributed to the limited precision of the 
procedure of source location, such that secondary fractures are detected. One should not exclude 
bridge formation in the process of fracture propagation, (He et al., 2020); the bridges then break 
producing AE signals. Figure 3 also shows that most events occur at the final stages of loading i.e., 
at the 99-100% band, which could be due to the initiation of unstable fracture growth causing a 
significant increase in the AE events. The microfracture source locations are randomly scattered (one 
would expect more fractures to occur at the notch tip and progress toward the boundary as the fracture 
propagates). This was also noted in the study by Kaklis et al. (2017) on marble samples. 

Aggelis and Shiotani (2022) described the application of two of the waveform parameters used to 
classify the fracture mode, which are the Rise Angle (RA) and the Average Frequency (AF). The use 
of RA vs. AF plots has also been extended to classify the microfracture of different types of rocks 
such as granite, sandstone, dolomite, marble, shale etc. (Li et al., 2018; Wang et al., 2017; Zhang et 
al., 2022; Zhang & Deng, 2020). RA is defined as the ratio between the time at which the maximum 
amplitude is reached (often defined as the rise time) and the maximum amplitude, while AF is defined 
as the ratio between the number of hits and the duration of the recorded waveform as illustrated in 
Figure 4. The RA vs. AF plots with increasing load are shown in Figure 5. Figure 6d shows that high 
RA (low AF) events were generated during the last stage of fracturing.  

Zhang and Deng (2020) used the rationale of low-frequency bandwidth to be associated with 
tensile events, and high-frequency events to be associated with shear events, and used these 
correlations to optimize the transition line of RA vs. AF plots, to differentiate tensile and shear 
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events. Interestingly, most of the events occurred at a relatively lower amplitude range in both cases. 
Low to high-amplitude signals were observed in both the low and high-frequency bandwidths. It can 
also be noted that there are clear frequency bands that have been formed between 100 kHz and 300 
kHz and 400k KHz and 600 kHz with very minimal peak frequencies in the range 300 kHz and 
400 kHz in the B01 specimen as shown in Figure 6. Li et al. (2017) and Zhang and Deng (2020) 
associated the lower band frequencies with tensile fractures, while higher band frequencies were 
associated with shear fractures. 

 
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 3. Source location of basalt specimens with different normalized Mode I failure load levels (a) 
<95% PMax-B01, (b) 95-98% PMax-B01, (c) 98-99% PMax-B01, (d) 99-100% PMax-B01, (e) <95% PMax-B02, (f) 95-

98% PMax-B02, (g) 98-99% PMax-B02, (h) 99-100% PMax-B02. 

 
Figure 4. Illustration of AE parameters. 

 
(a) (b) (c) (d) 

Figure 5. Variation of RA vs AF plot with increasing load (a) <95% PMax, (b) 95-98% PMax, (c) 98-99% PMax, 
(d) 99-100% PMax. 
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                                            (a)                                                             (b)                               

Figure 6. Frequency analysis: (a) peak frequency distribution; (b) peak frequency vs. amplitude, the transition 
lines run at amplitudes 40 and 80 (mV). 

4 CONCLUSIONS  

Tested basalt specimens in this study demonstrate rock variability: two specimens of the same rock 
loaded at the same rate exhibit a considerable difference in AE counts and fracture loads. The analysis 
of the AE characteristics of the two specimens during fracture propagation showed an increase in the 
number of hits and cumulative hits at around 95% of the maximum failure load. Secondary fractures 
were observed in the specimens, and source location analysis indicated events within the apparent 
fracture space, which were assumed to be associated with the secondary fractures. The RA vs. AF 
graph was used to reflect the four stages of fracture defined by the normalized maximum Mode I 
fracture failure load. It was noted that extreme RA (with low AF) waveforms were generated during 
the last stage of fracturing. The peak frequencies indicated the existence of two frequency 
bandwidths, and a significant amount of lower amplitude waves were observed in both specimens. 
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