
ABSTRACT: Most existing models about penetration rate (PR) prediction have been developed and 
validated against data from one single project. This poses the question whether these models can 
perform well when faced with new data. We use two datasets of two tunnels built with the same 
construction method and in similar geological conditions. Different machine learning (ML) models 
are trained, validated, and tested with dataset from one tunnel and then generated to the other dataset. 
Additionally, the effect of several data processing techniques for splitting and scaling on the 
performance and generalization of the different models is tested. The results demonstrate that random 
forest (RF) and extreme gradient boosting (XGBoost) exhibit better performance than other models. 
Regarding generalization, CART and XGBooost model exhibit the best performance. The impact of 
splitting and scaling techniques on the generalization of the models becomes noticeable than on the 
performance of models. 
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1 INTRODUCTION 

The choice between New Austrian Tunneling Method (NATM) and TBM is a decision often related 
to ground and length of the tunnel. NATM tends to be more economical for shorter distances and is 
more flexible when it comes to support systems. However, modern TBM can be used in a range of 
geologies, and it offers great advantages over NATM when it comes to the safety for the workers in 
case of difficult ground conditions. An essential task in tunneling is the reliable estimation of 
performance, often measured through penetration or penetration rate, which is needed for planning, 
cost estimation, and feasibility assessment. The ability of the TBM to collect large amounts of data 
during construction allows for better assessing and updating predictions during construction and 
supports decision making on site in a timely manner.  

Most work on tunneling performance, has been done on predicting performance of TBM in rock 
using traditional statistical methods (Sapigni et al., 2002; Yagiz, 2008). With the proliferation of 
machine learning (ML) and the capability of TBM to collect large datasets during construction, a 
new generation of models has been developed. During the past two decades, several ML based 

15th ISRM Congress 2023 & 72nd Geomechanics Colloquium. Schubert & Kluckner (eds.) © ÖGG  

TBM penetration rate prediction using machine learning models 
and models’ generalization 

Shengfeng Huang 
Stevens Institute of Technology, Hoboken, NJ, USA 

Pooya Dastpak 
Stevens Institute of Technology, Hoboken, NJ, USA 

Saadeldin Mostafa 
Stevens Institute of Technology, Hoboken, NJ, USA 

Misagh Esmaeilpour 
Stevens Institute of Technology, Hoboken, NJ, USA 

Rita Sousa 
Stevens Institute of Technology, Hoboken, NJ, USA 

-1508-



models have been used to estimate AR or PR, such as ANN , Fuzzy Logic, support vector machine 
(SVM) (Mokhtari & Mooney, 2020; Xu et al., 2019). Among them, the most commonly used 
techniques are random forest (RF) (Huang, Dastpak, et al., 2023; Sun et al., 2018; Tao et al., 2015) 
and support vector regression (SVR) (Huang, Esmaeilpour, et al., 2023; Mokhtari & Mooney, 2020; 
Yang et al., 2020) due to robust ability in dealing with complex systems with large inputs. Also, 
many temporal models have been developed to predict TBM performance with time, including 
recurrent neural networks, long-short term memory network (B. Gao et al., 2021; X. Gao et al., 2019; 
Lin et al., 2022). Hybrid models that combine ML and optimization algorithms have better 
performance through tunning hyperparameters (Yang et al., 2020; Yu et al., 2022). 

Despite the many models developed in the past decades, there is no consensus to what ML 
models best perform in predicting advance rate (AR) or Penetration (PR), particularly as new ML 
algorithms continue to be developed. Moreover, the ability of a model to perform well when data 
from a new tunnel becomes available is seldom tested mainly due to the scarcity of data. This is an 
important point as for a prediction model to be of use, its ability to generalize well to new data is 
essential. In this paper we test the ability of several ML models to predict TBM performance based 
on sensor data, and more importantly we test the ability of those models to generalize to new datasets. 
For that purpose, we will use the data from two tunnels in the same city with under similar ground 
conditions. Different ML models are tested and compared. The effect of several data processing 
techniques for scaling and splitting on the performance of the different models is also investigated. 
More importantly the generalization of the different models is tested. This is an important point as 
much of the existing research only uses data from one single tunnel to train, validate and test their 
performance prediction models.  

2 DATA DESCRIPTION  

2.1 Project description 

The data used in this study was collected during the construction of two tunnels S and C of the light 
metro for the city of Porto in Portugal. Tunnel S is 3.7 km long and tunnel C is 2.3 km long. The 
construction method used in the excavation of the tunnels was an Earth Pressure Balance Machine 
(EPBM), capable of operating in mixed ground conditions. Through an extensive geological survey 
during the planning phase of the project, seven geomechanical groups have been defined, ranging 
from sound granite to saprolite and alluvial deposits. Both tunnels through similar conditions. Figure 
1 shows alignments of both tunnels.  

2.2 Data and data processing 

To build the models, the input features were selected based on engineering judgment – nine (9) 
machine parameters were selected, as shown in Table 1. It is important to note that we did not have 
access to the as-built geologic properties for tunnel S. Therefore, we relied solely on machine 
parameters in building our models. The raw data from the sensors was processed and only data from 
the excavation phase was used (i.e., halt phase data, when TBM is stopped were excluded).  

Different scaling and splitting techniques were also compared. Namely, we used three different 
scaling techniques: StandardScaler, MinMaxScaler and RobustScaler to test their influence in the 
performance of the models. StandardScaler scales the data to have a mean of zero and a variance of 
one, but it may not ensure balanced feature scales, especially in the presence of outliers. 
MinMaxScaler scales the data to the range [0, 1], ensuring that all features have the same scale. 
RobusScaler is designed to be less affected by outliers by centering the data using the median and 
scaling it based on the interquartile range, making it a good choice when working with data that has 
outliers. 
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Figure 1. Map of Metro do Porto. Tunnel C runs from Campanhã to Trindade and tunnel S runs from 

Salgueiros to São Bento (Adapted from Babendererde et al., 2004). 

Table 1. List of selected input features. 

Number Feature 
1 Torque cutting wheel 
2 Pressure force cutting wheel 
3 Thrust force 
4 Torque screw 
5 Cutting wheel speed of rotation 
6 Thrust pressure 
7 Earth pressure 
8 Pressure foam lance 
9 Excavated material flow 

 
As for the splitting techniques, we compared Random split with Stratified split. In the Random split, 
data is split into training and testing randomly. In the Stratified split, the data is split in a way that 
ensure both training and testing data can be representative of all ranges of data, which may help 
reduce bias in the model. 

2.3 Methods 

Several models were tested, which include models such as k-nearest neighbor (KNN), support vector 
regression (SVR), artificial neural networks (ANN), random forest (RF), classification and 
regression trees (CART), and extreme gradient boosting (XGBoost). KNN is a non-parametric 
algorithm that makes predictions based on the closest labeled examples in the training data. SVR is 
a supervised learning algorithm that analyzes data and learns to predict the output values based on 
input data. ANN is a machine learning model inspired by biological neural networks, consisting of 
layers of interconnected nodes that process input data. RF and CART are decision tree-based models 
that recursively split the data into subsets based on certain criteria. XGBoost is a boosting algorithm 
that uses an ensemble of weak decision trees to make predictions.  

For each model, we performed a grid search to optimize the hyperparameters, and evaluated the 
performance using the root mean squared error (RMSE) and coefficient of determination (R2) 
metrics. These models were trained, validated, and tested on the data of tunnel line C and generalized 
to line S.  
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3 RESULTS 

3.1 PR prediction model performance 

The results are displayed below on Table 2. Four datapoints whose value of PR are greater 150 
mm/rpm were removed as they were considered outliers. The results show that models perform well 
when predicting PR, with R2 ranges from 0.90 to 0.99 for training data and 0.88 to 0.94 for testing 
data. Among these models, RF, and XGBoost outperform other models with R2 larger than 0.98 for 
training data and R2 larger than 0.94 for testing data. On the other hand, model error, expressed in 
RMSE, is low in all cases.  

Table 2. Performance of models under different split and scale techniques. 

Model Split 
techniques Scale techniques 

Tunnel line C Generalization to 
tunnel line S Training Testing 

R2 RMSE R2 RMSE R2 RMSE 
KNN 

Random 
split StandardScaler 

0.940 4.311 0.940 4.211 -0.125 11.845 
SVR 0.967 3.184 0.884 5.869 0.019 11.062 
ANN 0.944 4.169 0.925 4.715 -0.034 11.360 
RF 0.986 2.075 0.940 4.202 0.667 6.450 
CART 0.980 2.460 0.907 5.248 0.646 6.643 
XGBoost 0.990 1.727 0.938 4.297 0.748 5.611 
KNN 

Stratified 
split StandarScaler 

0.948 4.034 0.908 5.160 -0.302 12.744 
SVR 0.904 5.483 0.887 5.725 0.289 9.419 
ANN 0.958 3.729 0.928 4.557 0.033 10.982 
RF 0.990 1.766 0.929 4.532 -0.216 12.316 
CART 0.980 2.533 0.886 5.732 0.687 6.249 
XGBoost 0.985 2.169 0.924 4.698 0.603 7.034 
KNN 

Stratified 
split MinMaxScaler 

0.947 4.074 0.906 5.220 -0.455 13.474 
SVR 0.957 3.657 0.915 4.956 -0.084 11.631 
ANN 0.956 3.715 0.932 4.446 0.333 9.123 
RF 0.990 1.766 0.929 4.532 -0.216 12.316 
CART 0.978 2.642 0.889 5.654 0.677 6.352 
XGBoost 0.985 2.169 0.924 4.698 0.603 7.034 
KNN 

Random 
split RobustScaler 

0.945 4.114 0.932 4.492 0.361 8.932 
SVR 0.964 3.346 0.914 5.046 0.405 8.615 
ANN 0.932 4.570 0.921 4.830 0.015 11.086 
RF 0.986 2.095 0.942 4.148 0.686 6.256 
CART 0.980 2.460 0.907 5.248 0.646 6.643 
XGBoost 0.990 1.727 0.938 4.297 0.748 5.611 

 
Slight changes are observed in the performance of KNN and SVR models when using different 
scaling and split techniques, while the impact was relatively small for ANN, RF, CART, and 
XGBoost models. Due to the relatively balanced nature of the date with enough datapoints, the 
impact of split is less apparent. This means that by using either Random split or Stratified split, one 
can split the data into two parts which are representative of all ranges of data. Regarding the impact 
of scale techniques, the MinMaxScaler and RobustScaler outperforms StandardScaler technique 
since data is not normally distributed and thus StandardScaler is not the best fit. It is worth noting 
that scaling techniques do not have an impact on the performance of decision tree-based models such 
as random forests, CART, and XGBoost, as these models are not sensitive to the variance in the data.  

The prediction performance showing the XGBoost model with Stratified split and MinMaxScaler 
technique predicted PR versus monitored PR using is presented in Figure 2(a). Overall, the results 
show good agreement between the predicted and monitored PR values. However, it is important to 
note that most of the PR data is concentrated in the range of 0-25 mm/rpm, while less data lies in the 
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range of 25-150 mm/rpm. As a result, the model's fitting in this range is not as good as in the lower 
range. This may suggest that the model is not as accurate in predicting higher values of PR, and 
further improvements may be necessary to enhance the model's performance in this range. 

  
(a) Performance on tunnel line C (b) Generalization to tunnel line S 

Figure 2. Performance and generalization of XGBoost using Stratified split and MinMaxScaler technique. 

3.2 Generalization 

Once the models described above were trained, validated, and tested, they were applied to the data 
of from tunnel line S to assess their generalization capability. The results are presented in Table 2 
and one typical generalization performance of XGBoost model on tunnel S is shown in Figure 2(b).  

The results show that models’ generalization ability varies greatly depending on the techniques 
used. In most cases, the models’ generalization performance is poor. However, in some cases, the R2 
value for generalization can reach up to 0.74. For example, the XGBoost model exhibits higher 
generalization ability with R2 larger than 0.60, regardless of the split and scale techniques used. The 
RF and CART model also demonstrate a good generalization capability.  

In contrast to the results obtained for tunnel C, we observed a noticeable impact of the split and 
scale techniques on the generalization performance of the models for tunnel S. The variance of R2 
can reach up to 0.90 for RF, followed by 0.81 for KNN. RF can exhibit a good generalization 
performance with R2 of 0.69 using Random split, but it can also have a poor performance with R2 of 
-0.22 using Stratified split. Less impact is observed for CART and XGBoost model, with variance 
of R2 of 0.04 for CART and 0.14 for XGBoost. The models that best generalize are CART and 
XGBoost.  

In addition, large errors of PR prediction can be observed in the range of 25-150 mm/rpm. This 
is most likely due to the insufficient training data within this range. 

4 CONCLUSIONS 

Models based on ML have proliferated in the last decade in tunneling. Despite their incredible 
performance when applied to a dataset corresponding to one project, there are few studies that look 
into the ML model’s ability to react to new data and make accurate predictions, i.e., the capability of 
a model to generalize. This lack of studies is mainly due to the lack of available tunnel construction 
data. However, a model’s ability to generalize is central to its success. A model that does not 
generalize well is practically useless.  

This paper shows the preliminary results of a study that is being conducted to develop TBM 
performance prediction models and test their generalization to new data. The results show that new 
generation models that use boosting techniques such as XGBoost show a promising outcome but that 
more studies need to be done in order to develop models that can not only generalize well but can be 
deployed in real life situations. Emphasis of our current work is on developing online learning models 
that use past data, but continuously update in real-time as the excavation progresses.  
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