
ABSTRACT: Surface and underground excavations in rock are designed for ensuring stability. In 
many tunnel, underground cavern and rock slope projects, designing to acceptable deformation limits 
or tolerances is just as critical as stability. Understanding rock mass stiffness and deformability 
becomes an integral part of ground characterization and subsequent design. Deformation moduli for 
rock masses are often estimated using empirical methods that may have been developed from limited 
data, specific ground conditions, and provide a single result representing the behavior of an isotropic, 
homogeneous rock mass. However, most rock masses are heterogeneous or anisotropic, and 
deformation moduli can vary significantly depending on the loading direction. This paper reviews 
available empirical methods for evaluating deformation moduli and compares them with an 
observational model from monitored slope deformations in siltstones, sandstones and quartzite at a 
surface and underground mine in Australia. 
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1 INTRODUCTION 

Deformation moduli of intact rock and rock masses are affected by several factors including scale 
effects (e.g. intact rock versus rock mass; and the scale of the rock mass from a small underground 
excavation to a large slope), confining stresses, anisotropy and loading direction, temperature, water 
content and calculation methods such tangent versus secant moduli (Zhang, 2017). 

Recent comparative studies on the empirical estimation of deformation moduli have a general 
consensus that is very difficult to decide which empirical approach is most accurate since they are 
based on databases of vastly different ground types and are largely dependent on subjective rock 
mass classifications (Kayabasi et al. 2003; Birid, 2014; Alemdag et al. 2015; Vasarhelyi & Kovacs, 
2016; Zhang, 2017; Kayabasi & Gokceoglu, 2018). 

In this paper, empirical estimations of rock mass deformation moduli (Em) are compared against 
observational models within siltstones, sandstones and quartzites at Telfer gold mine, which is 
located within the Great Sandy Desert in Western Australia, approximately 485 kilometers south-
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east of Port Hedland. Telfer has surface mining operations across multiple open pits and underground 
operations using open stoping and sub-level caving methods (Nicoll et al. 2017). 

2 ROCK MASS STIFFNESS ESTIMATION 

Over the last 50 years, empirical methods for estimating rock mass stiffness or deformation moduli 
have been derived from intact rock modulus (Ei), rock quality designation (RQD), rock mass rating 
(RMR), geological strength index (GSI), Q-system (Q), P-wave velocity (Vp) and the unconfined 
compressive strength of intact rock (σc).  

Equations 1-3 estimate Em from Ei and RQD (Coon & Merritt, 1970; Gardner, 1987; Zhang & 
Einstein, 2004). Equations 4-15 estimate Em from RMR, which refers to RMR89 (Bieniawski, 1989) 
except where otherwise stated as RMR76 (Bieniawski, 1978; Serafim & Pereira, 1983; Aydan et al. 
1997; Gokceoglu et al. 2003; Nicholson & Bieniawski, 1990; Mitri et al. 1994; Ramamurthy, 2004; 
Sonmez et al. 2006; Chun et al. 2006; Galera et al. 2007; Shen et al. 2012; Kavur et al. 2014). 
Equations 16-21 estimate Em from GSI and related parameters from the Hoek-Brown failure criterion 
(Hoek & Brown, 1997; Zhang, 2017; Gokceoglu et al. 2003; Hoek & Diederichs, 2006; Sonmez et 
al. 2004). Equations 22-24 estimate Em from the Q-system and Vp (Barton 1983, 2002). Equations 
25-26 estimate Em from σc (Rowe & Armitage, 1984; Palmström & Singh, 2001), and Equations 27-
28 estimate Em from multiple parameters (Beiki et al. 2010). 

Analytical approaches and numerical simulations of synthetic rock masses can also be used to 
estimate deformation moduli, but results are highly dependent on several input parameters, some of 
which can be difficult to determine precisely (Bar, 2020). 
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3 GROUND CONDITIONS, SLOPE PERFORMANCE AND OBSERVATIONAL 
MODEL TO ESTIMATE STIFFNESS 

The Telfer gold deposit is hosted within Proterozoic stratigraphy of the Yeneena Supergroup. Rock 
types include calcareous and argillaceous siltstones, sandstones and quartzites as shown in Figure 1. 
Geological structure is complex and is the primary reason behind the mineralization.  

Rock mass and discontinuity properties in the gold deposit are well understood (Bar & Weekes, 
2017). Intact rock and rock mass strength, and to a lesser extent, bedding strength, vary with the 
degree of weathering and the type of alteration (clay or silica enrichment). Table 1 summarizes intact 
rock and rock mass characteristics.  

Planar sliding along adversely oriented bedding planes within siltstone, sandstone and quartzite 
are the most common mode of slope instability. Underground, delamination along bedding planes 
may occur if unsupported stope sizes are excessive. 

Figure 1. Examples Photographs of Typical Ground Conditions in Siltstone, Sandstone and Quartzite. 

Table 1. Summary of Typical Rock Mass Conditions. 

Rock Mass Conditions Siltstone Siltstone Siltstone Sandstone 
SW-FR 

Quartzite 
SW-FR HW MW SW-FR 

σc  [MPa] 35.9 57.0 83.3 121.4 203.4 
Ei [GPa] 9.0 28.7 47.4 54.1 74.8 
RQD [%] 25.6 39.4 60.8 68.5 63.4 
RMR89*  40 47 57 62 62 
GSI*  35 42 52 57 57 
Q*  0.41 0.70 1.36 1.77 1.82 
Vp* [km/s] - 3.40 3.80 4.25 - 
Obs. Em^ [GPa] 3 7 15 17 25 

 * Median values presented. 
 ^ Observational model Em: back-calculated using FE analysis to simulate monitored displacements. 
 

Siltstone HW 

Siltstone MW 

Siltstone SW-FR 

Sandstone SW 

Quartzite SW 
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Pit slope displacements across various slopes at Telfer gold mine have been monitored using survey 
prisms and automatic, robotic total stations for over 20 years. Survey prisms were installed at, and 
several meters behind the pit crests during various pushbacks.  

For the cases investigated, the pit slope geometry relative to the orientation of the bedding was 
such that the loading direction was sub-perpendicular to the bedding. All slopes were stable with 
rock masses exhibiting elastic creep-like behavior with less than 0.2 mm/day displacement rates, 24 
months after excavation. Based on the available data, total displacements for different pushbacks 
were estimated to range from 172 to 343 mm over a 20-year period (Bar, 2020). 

Numerical simulations using finite element (FE) analysis software, RS2 (Rocscience Inc), were 
completed to adjust stiffness properties and replicate the monitored displacements. Back-calculated 
Em from the observational model have been presented in Table 1. 

4 COMPARISON OF ROCK MASS STIFFNESS EMPIRICAL ESTIMATES AND THE 
OBSERVATIONAL MODEL 

Empirical estimates of rock mass stiffness were derived for siltstones with different degrees of 
weathering, sandstone and quartzite based on the rock mass conditions displayed in Table 1 and 
Equations 1-28.  

Figure 2 graphically illustrates the rock mass moduli, Em, estimated from various equations. Very 
little consistency is visible between various equations or methods for the different ground conditions. 
By way of example, Em for Siltstone SW-FR varies between 2.0 and 28.9 GPa, which represents an 
order of magnitude in terms of variability. 

Only 15 of 127 (12%) empirical estimates in Figure 3 attained Em values within 10% of the 
observational model results. Ratios of observational to empirical Em values were as low as 0.2 and 
as high as 10, indicating very little to no correlation for some materials using some of the equations. 

For the ground conditions at Telfer, Equations 5, 13, 15, 19 and 21 were generally more reliable 
with Em estimates ranging from <10 to 40% of the observational model results. For hard rock, σc>50 
MPa, Equations 23 and 24 were also very reliable. 

Figure 2. Empirically derived Deformation Moduli for Siltstone, Sandstone and Quartzite based on various 
empirical methods and their respective equation numbers. Note: data gaps represent limitations or constraints 

within the specific empirical methods. 
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Figure 3. Variability of empirical deformation moduli estimates compared to the observational model. 

5 CONCLUSION 

Evaluation of rock mass stiffness using different empirical methods yielded vastly different and 
variable results, consistent with previous studies. The observational model was useful for identifying 
the most applicable empirical methods for the specific ground conditions at Telfer. 

Empirical methods for rock mass stiffness evaluation remain useful where no observational data 
is available. Users of empirical methods are strongly encouraged to understand the limitations of the 
methods they apply as predictive tools. They are further encouraged to consider and apply parameter 
sensitivity (a range of values rather than single deterministic values) on their local site conditions, 
and to validate these in the field with routine ground characterization and monitoring. 

Although limited to siltstone, sandstone and quartzite with the loading direction sub-
perpendicular to anisotropy (bedding), this study provides some insights into the magnitude of 
variability that could be expected from empirically derived rock mass stiffnesses. 
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