
ABSTRACT: This paper presents a numerical method to predict the temperature weakening effects 
on granite rock. Thermally induced cracking is modelled in the continuum sense by using a damage-
viscoplasticity model based on the rounded Rankine surface. The governing thermo-mechanical 
problem is solved with an explicit staggered method. Rock heterogeneity is described as random 
clusters of finite elements assigned with the constituent mineral, here Quartz, Feldspar, and Biotite, 
material properties. The temperature dependence of the minerals is accounted for up to 800 °C, i.e. 
well beyond the Curie point (573 °C) of Quartz. The simulations demonstrate that the present 
approach can accurately predict the experimental weakening effects on the rock strength and stiffness 
as well as the macroscopic failure modes in tension. Moreover, it does so in a noncircular way, i.e. 
not using the laboratory data on rock strength as an input data in the constitutive description. 
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1 INTRODUCTION 

High temperature has a detrimental effect on rock strength and stiffness (e.g. Wang & Konietzky 
2019; and Toifl et al. 2017). The mechanism behind the thermal weakening under slow uniform 
heating, i.e., with negligible thermal gradients, can be traced to thermal cracking due to rock 
heterogeneity. More specifically, the mismatch of the elastic constants and thermal expansion 
coefficients of different mineral phases induces thermal stresses, which in turn cause cracking. Rocks 
with Quartz are especially prone to thermal cracking due to its highly nonlinear behavior upon 
approaching the α-β-transition at 573 °C.  

Numerical prediction of thermal effects in rocks is an important topic in rock engineering. Saksala 
(2022) modelled the thermal weakening effects in granite rock under uniaxial compression and 
tension by assuming that only the thermal expansion of Quartz phase is (linearly) temperature 
dependent. This simplified approach successfully predicted the granite strength and stiffness 
degradation, as well as the 3D failure modes, up to 500 °C. However, deviations from the 
experimental data occurred at 700 °C, i.e., beyond the α-β-transition. This was clearly due to the 
simplifying assumption of linear temperature dependence, which is not valid for Quartz mineral. The 
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purpose of the present paper is to mend this shortcoming by properly accounting for the nonlinear 
temperature dependence of Quartz thermal and elasticity properties. However, only tension tests are 
considered in the present study. 

2 ROCK NUMERICAL DESCRIPTION 

2.1 Rock failure model 

The granite rock is modelled as a damaging viscoplastic isotropic and heterogeneous material 
consisting of Quartz, Feldspar and Biotite mineral phases. The stress states leading to inelastic strain 
and damage are indicated by the Modified Rankine (MR) criterion, which, along with other model 
components, is written as: 

 𝑓𝑓MR(𝝈𝝈, �̇�𝜆MR) = �∑𝑖𝑖=13 ⟨𝜎𝜎𝑖𝑖⟩2 − (𝜎𝜎t0 + 𝑠𝑠MR�̇�𝜆MR) (1) 

 �̇�𝛆vp = �̇�𝜆MR
𝜕𝜕𝑓𝑓MR
𝜕𝜕𝛔𝛔

,𝜔𝜔t = 𝐴𝐴t�1 − exp�−𝛽𝛽t𝜀𝜀eqvt
vp ��, 𝜀𝜀ėqvt

vp = �∑𝑘𝑘=13 〈𝜀𝜀v̇p,𝑘𝑘〉  (2) 

 𝝈𝝈 = (1 −𝜔𝜔t)�̄�𝝈, �̄�𝛔 = 𝐄𝐄(𝜃𝜃): �𝛆𝛆 − 𝛆𝛆vp − 𝛆𝛆θ�, 𝛆𝛆θ = 𝛼𝛼∆𝜃𝜃𝐈𝐈   (3) 

where σi is the ith principal stress of the stress tensor 𝝈𝝈 with the positive parts obtained through 
Macauley brackets in the MR criterion (1). Moreover, the rest of the symbols are: 𝜎𝜎t0 is the static 
tensile strength to which the rate dependent term consisting of the viscosity modulus 𝑠𝑠MR and the 
viscoplastic multiplier �̇�𝜆MR is added; �̇�𝛆vp is the rate of viscoplastic strain 𝛆𝛆vp; 𝜔𝜔t is the tensile damage 
variable driven by the equivalent viscoplastic strain 𝜀𝜀eqvt

vp  defined by the rates (increments actually) 
principal viscoplastic strains 𝜀𝜀v̇p,𝑘𝑘; 𝐴𝐴t and 𝛽𝛽𝑡𝑡 = 𝜎𝜎t0ℎ𝑒𝑒/𝐺𝐺Ic are parameters controlling the final value 
and the rate of softening with the latter being defined a characteristic length of a finite element and 
the mode I specific fracture energy 𝐺𝐺Ic; 𝐄𝐄 is the elasticity tensor depending on temperature 𝜃𝜃; 𝛆𝛆 is the 
total strain. Equation (3) is the nominal-effective stress relation with the constitutive law written 
under the small deformation assumption. Finally, thermal strain 𝛆𝛆θ depends linearly on the thermal 
expansion coefficient 𝛼𝛼 and temperature change ∆𝜃𝜃. These equations are augmented by the 
consistency conditions (𝑓𝑓MR ≤ 0, �̇�𝜆MR ≥ 0, �̇�𝜆MR𝑓𝑓MR = 0) and solved at the material (Gauss) point 
with a standard stress return mapping algorithm.  

2.2 Governing thermo-mechanical finite element discretized equations  

The finite element discretized thermo-mechanical problem, which can be derived by standard steps 
using the principle of virtual work, reads: 

 𝐂𝐂θ(𝛉𝛉)�̇�𝛉𝑡𝑡 + 𝐟𝐟int,𝑡𝑡𝜃𝜃 (𝛉𝛉𝑡𝑡,𝜔𝜔𝑡𝑡) = 𝐟𝐟θ,𝑡𝑡   &  𝐌𝐌�̈�𝐮𝑡𝑡 + 𝐟𝐟int,𝑡𝑡(𝐮𝐮𝑡𝑡 , �̇�𝐮𝑡𝑡 ,𝛉𝛉𝑡𝑡) = 𝐟𝐟ext,𝑡𝑡 (4) 

 𝐟𝐟int = 𝐀𝐀e=1
Ne � 𝐁𝐁eT

𝑉𝑉e
𝛔𝛔e(𝐮𝐮𝑡𝑡 , �̇�𝐮𝑡𝑡 ,𝛉𝛉𝑡𝑡,𝜔𝜔𝑡𝑡)d𝑉𝑉,  𝐌𝐌 = 𝐀𝐀e=1

Ne � 𝜌𝜌𝐍𝐍eT𝐍𝐍e
𝑉𝑉e

d𝑉𝑉 (5) 

 𝐂𝐂θ = 𝐀𝐀e=1
Ne � 𝜌𝜌𝑐𝑐(𝜃𝜃)𝐍𝐍θ

e,T𝐍𝐍θed𝑉𝑉,
𝑉𝑉e

 𝐟𝐟int,𝑡𝑡𝜃𝜃 = 𝐀𝐀e=1
Ne � (1 −𝜔𝜔𝑡𝑡)𝑘𝑘(𝜃𝜃)𝐁𝐁θ

e,T𝛉𝛉𝑡𝑡ed𝑉𝑉
𝑉𝑉e

 (6) 
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 𝐟𝐟θ = 𝐀𝐀e=1
Ne � 𝑄𝑄int𝐍𝐍θ

e,T

𝑉𝑉e
d𝑉𝑉 (7) 

where the symbols are as follows: 𝐌𝐌 is the consistent mass matrix (to be lumped by the row sum 
technique) with density 𝜌𝜌; 𝐂𝐂 is thermal capacity matrix (to be lumped by the row sum technique) 
where the heat capacity c depends on temperature; 𝐟𝐟int,𝑡𝑡𝜃𝜃  is the internal thermal force vector depending 
explicitly on damage and implicitly on temperature, via conductance k; 𝐟𝐟ext is the external force 
vector; 𝐟𝐟int is the internal mechanical force vector defined in (5); 𝐟𝐟θ is the vector of thermal loading 
with 𝑄𝑄int being the volumetric heating magnitude (flux); A is the standard finite element assembly 
operator; 𝐁𝐁e is the kinematic matrix (mapping the nodal displacement into element strains); θ is the 
nodal temperature vector; 𝐍𝐍θ and 𝐍𝐍e are the temperature and displacement interpolation matrices 
(same interpolation functions are used in both); 𝐁𝐁θ is the gradient of 𝐍𝐍θ. The system (4) is solved by 
explicit time stepping in a staggered manner. Mass scaling is used for the mechanical part of the 
problem to increase the critical time step of explicit integrator. For more details, see Saksala (2022). 

2.3 Temperature dependence of rock material properties 

Granite material properties depend strongly on temperature, especially those of Quartz. However, it 
should be strongly emphasized that when predicting the thermal weakening effect by numerical 
modelling, the temperature dependence of the strength cannot be fed into the model as an input data 
– that would beg the question, i.e., it would be circular reasoning. Moreover, it is not even legitimate 
to do so because the strength (tensile and compressive) is measured for a laboratory size specimen, 
not at the material point level where the constitutive equation is written and implemented. Therefore, 
only the elastic constants and thermal properties are temperature dependent here.  

The laboratory data provided by Wang & Konietzky (2019) and Toifl et al. (2017) is used here. 
Figure 1 shows the temperature dependencies of the rock material properties implemented in the 
present material model. Linear interpolation is applied between the datapoints. 

 
Figure 1. Temperature dependence of Young’s modulus (a), Poisson’s ratio (b), thermal expansion (c), heat 

capacity (d), and thermal conductivity (e) (the datapoints in Wang & Konietzky (2019) and Toifl et al. (2017) 
are reproduced by a plot digitizer software). 
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As observed in Figure 1, Quartz is the deviant mineral while Feldspars and Biotite (Micas in general) 
can be taken mostly independent of temperature within this range for these properties. Moreover, it 
is noted that the thermal expansion coefficient data for Quartz in Figure 1c is for Granite by Heuze 
(1983). The true temperature dependence of Quartz is not used here due to its extremely anomalous 
behavior: Upon reaching the Curie point 573 °C, where the α-β-transition takes place, the thermal 
expansion coefficient of Quartz reaches 13 times the value it has at 25 °C (Wang & Konietzky 2019). 
When the true behavior was implemented, the results to be presented in the next section, were not 
realistic. Furthermore, the latent heat related to the α-β phase change is -9.8 J/g (Carpenter et al. 
1998) while the latent heat of Granite in melting is 420 J/g. Therefore, the Quartz phase change can 
be ignored from the computational point of view. The rest of the material properties and model 
parameters for simulations are given in Table 1.  

Table 1. Material properties and model parameters for simulations. 

Parameter / Mineral Quartz Feldspar Biotite 
E      [GPa] 96 87 86 
ν       0.093 0.29 0.25 
σt0    [MPa] 14 8 7 
ρ      [kg/m3] 2650 2620 3050 
GIc   [J/m2] 100 100 70 
α0     [1/K] 1.0E-5 0.5E-5 1.2E-5 
k0     [W/mK] 707 754 77 
c0     [J/kgK] 8.2 2.0 2.0 
At      0.98 0.98 0.98 
sRM  [MPa⋅s] 0.01 0.01 0.01 
f      [%] 25 65 10 

 
The parameters in Table 1 having subscript “0” are given at the room temperature. Moreover, the 
viscosity values given are small enough not to cause any strain rate effects in the low-rate tension 
tests presented in the next section. Finally, the percentages in the last row in Table 1 mean the 
percentage of the mineral in the numerical rock.  

3 NUMERICAL SIMULATIONS 

3.1 Numerical heating of rock samples 

Following Saksala (2022), uniform heating up to 300 °C, 500 °C and 700 °C is carried out on the 
numerical rock samples. As mentioned above, mass scaling is applied here to increase the critical 
time step of the explicit time stepping. This is enabled by the non-inertial nature of slow oven heating. 
In addition, volumetric heating is applied with Qint = 1E10 W/m3 (Equation (7)) at each node of mesh 
to secure a homogenous temperature field in the rock sample. The rock mineral mesotexture is 
described as random clusters of finite elements. 
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Figure 2. Simulation results for thermal treatment: (a) Finite element mesh with 488898 linear tetrahedrons; 
(b) Rock mineral texture (Quartz = 3, Feldspar = 2, Biotite = 1); (c) Temperature distribution at the end of 

heating to 300 °C; (d) Tensile damage distributions at the end of heat treatments.  

Figure 2 shows the simulation results at the end of heating process. Due to the heterogeneous material 
description and the extremely short heating time of ~0.1 s, the temperature distribution is not 
uniform but varies from 294 to 301 °C, as seen in Figure 2c. The magnitude of damage is quite mild 
below the α-β-transition. Next, the uniaxial tension test is carried out on the intact and heat-treated 
samples. 

3.2 Numerical tension tests 

Uniaxial tension tests are performed on an intact numerical rock and the heat-treated, cooled down 
samples. A velocity of 0.05 m/s, which corresponds to a strain rate of 1 s-1, is applied at the top 
surface of the numerical sample. The results are shown in Figure 3. 

 
Figure 3. Simulation results for tension tests: (a) Failure modes at different temperatures in terms of tensile 
damage patterns; (b) Average stress-strain curves; (c), (d) Predicted normalized tensile strengths at different 
temperatures including mean fitted curve and the experimental data scatters for tensile strength and Young’s 

modulus measured from the curves in Figure 3c (data reproduced from Wang & Konietzky (2019)). 
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All the numerical samples have failed in the experimental transverse splitting mode with a single 
failure plane (Figure 3a). The corresponding stress-strain curves (Figure 3b) display a mild pre-peak 
nonlinearity followed by exponential softening. The predicted tensile strengths are within the 
experimental bounds, even at 700 °C, which was not the case in Saksala (2022). Finally, the predicted 
degradation of Young’s modulus, measured from the curves in Figure 3c, is also in agreement with 
the experiments, as can be observed in Figure 3d.  

4 CONCLUSIONS 

Thermally induced degradation of Granite under uniform slow heating was numerically studied by 
the continuum approach based on a damage-viscoplasticity model. The peculiar behavior of Quartz 
mineral was properly modelled by taking laboratory data for the elasticity constants and thermal 
properties into account for a wide range of temperatures. With this approach, Granite failure modes, 
as well as the strength and stiffness degradation in tension can be accurately predicted up to 800 °C, 
i.e. well beyond the α-β-transition of Quartz, as was demonstrated in this paper. It is emphasized that 
the present approach does not use the measured data for the tensile strength temperature dependence 
as a model input. It, therefore, predicts the strength degradation in a noncircular way. 
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