
ABSTRACT: Simplified 2D analysis of ground support interaction using the convergence-
confinement method, although useful in preliminary stages of tunnel design, may be inadequate for 
complex situations which necessitate 3D numerical simulations with high computational efforts and 
costs. An alternative approach based on machine learning is proposed here in order to evaluate the 
stresses and displacements at equilibrium in the lining of a supported tunnel. Based on data 
previously obtained by numerical simulations, the Bagging Method applied to Artificial Neural 
Networks (ANNs) is used. We consider a circular tunnel excavated in a Mohr-Coulomb elastoplastic 
medium. The analysis accounts for a large range of ground conditions, support characteristics, lay 
distances and tunnel radius. The results show that ANNs models perform well with the small dataset 
used here and can be considered as a useful alternative to complex 3D numerical simulations. 
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1 INTRODUCTION 

1.1 Context 

Preliminary stage of tunnel design is generally performed using a plane-strain approach based on the 
convergence confinement (cv-cf) method. This method however relies on strong geotechnical and 
geometrical assumptions whose relevance is to be checked for each application (Panet & Sulem 
2022). Therefore, the limits for its applicability have been highlighted (e.g. Eisenstein & Branco 
1991, De la Fuente et al. 2019).  

In particular, when the ground exhibits large deformation and/or when the support is very stiff 
and installed close to the tunnel face, the classical cv-cf method appears to be inaccurate. In that case, 
because of the arching effect in the longitudinal direction, the ground pressure may be underestimated 
(Cantieni & Anagnostou, 2009). Therefore, the original method has been enhanced using the so-
called implicit methods (Nguyen-Minh & Guo. 1996, Bernaud et al. 1994). In two recent papers (De 
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la Fuente et al. 2019, 2021) the limits of these approaches have been highlighted and the domain of 
application of the cv-cf methods was evaluated (see Figure 8 in De la Fuente et al. 2021). 

On the other hand, three-dimensional simulations may be performed but at rather high 
computational efforts and costs. Such simulations are more often performed for a posteriori 
interpretation of field data to validate constitutive models, (e.g. Liu Y. et al. 2021, Tran-Manh et al. 
2015, Bonini et al. 2009). 

1.2 Machine learning tools in tunneling 

As an alternative to three dimensional numerical modeling, emergent artificial intelligence 
techniques begin to be more and more used in tunneling and underground construction fields (Jong 
et al. 2021). Many machine learning techniques have been tested to predict convergences at the wall 
of a tunnel. Three types of approaches can be distinguished: deterministic (e.g. Adoko et al. 2013, 
Mahdevari et al. 2013, Satici et al. 2020), Bayesian (Feng et al. 2019) or hybrid (Fei et al. 2020, 
Chang et al. 2022). A common observation is that machine learning tools are able to provide fast and 
rather accurate predictions. 

However, a crucial point in the application of machine learning is the capacity of a model to 
perform well on previously unobserved inputs (Goodfellow 2015). Therefore, the dataset on which 
the tool is being trained is of utmost importance: the amount of available data but also its nature and 
quality will define how well the model will generalize. In other words, the developed tool should 
only be tested on a similar dataset as the one used for training to avoid bad performances. As every 
underground structure is unique, it is thus difficult to reuse a model trained on a specific tunnel to 
another one.  

As a consequence, the use of surrogate models based on artificial intelligence tools that are trained 
on synthetic datasets (generated by numerical simulations) may be relevant. The main idea is to bring 
a complement to advanced numerical modeling in order to create a powerful link between the 
traditional paradigm of numerical modeling and the new paradigm of machine learning (Furtney et 
al. 2022). Synthetic datasets are convenient because they do not contain any noise. Moreover, they 
can take into account a large range of parameters (ground conditions, structure characteristics…) 
which enhance generalization. Still, the quantity of synthetic data is problem-dependent.  

When dealing with scarce datasets, which is usually the case for tunneling applications (Liu L. et 
al. 2021), one has to be careful with overfitting. Overfitting occurs when a model adjusts excessively 
to the training data, seeing patterns that do not exist and consequently performing poorly in predicting 
new data (Bishop 2006). One way to limit overfitting is to avoid complex models with too much 
hyperparameters or to use regularization techniques. Another way is to combine several models 
together, called weak learners, and then to make a global prediction according to every single one. 
In most cases, this method leads to better results than using a unique strong model. These techniques 
are called ensemble methods: they contribute to reduce the variance/bias of final predictions and 
therefore improve generalization.  

1.3 Scope of the study 

In this paper, we explore the applicability and the accuracy of artificial neural networks (ANNs) 
models for analyzing the ground-support interaction and evaluate the ground displacement and 
support stress at equilibrium state. Using a synthetic data set obtained by previous three-dimensional 
numerical simulations (De La Fuente et al. 2019), different ANN models (weak learners) are trained 
according to the bagging ensemble method and a hyper-parameter analysis is performed. Motivated 
by the above considerations, this paper aims to answer the question whether a machine learning tool 
based on an ensemble method can accurately and reliably predict displacements and stresses in the 
lining of a supported tunnel excavated in an elastoplastic ground based on a synthetic dataset.  

To that end, a Mohr–Coulomb elastic perfectly plastic model is used to describe the constitutive 
behavior of the ground and a linear elastic model is assumed for the support. This analysis takes into 
account a large range of ground conditions, support characteristics, lay distances (distance of 
support/lining installation from the tunnel face) and tunnel radius. Moreover, the calculations are 
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performed for some representative values of the stability number N. This notion is related to the 
extension of a plastic zone near the tunnel face (Panet & Sulem 2022). The bagging technique 
(explained in section 2.2) combined with neural networks is applied. Results are discussed in section 
3 and conclusions are proposed in section 4.   

2 MACHINE LEARNING MODEL 

2.1 Dataset 

The dataset has been created by performing in total 720 three-dimensional simulations of 
excavations. Each simulation corresponds to one configuration given a specific selection of the 
parameters defined in Equation (1) and presented in Table 1 (De La Fuente et al. 2019). 

Because of the geometry of the problem, a simple axisymmetric study has been carried out. The 
aim is to monitor the maximum hoop stresses 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚∗  and displacements 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

∗  that occur in the lining 
at the equilibrium state far from the tunnel face for each configuration. 
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where 𝐸𝐸 and 𝐸𝐸𝑠𝑠 are respectively the Young moduli of the ground and of the lining and where 𝑑𝑑 and 
𝑅𝑅 are respectively the lay distance and the tunnel radius, 𝑒𝑒 is the thickness of the lining, 𝜎𝜎0 is the 
initial stress state in the ground and 𝜎𝜎𝑐𝑐 represents the compression resistance.  

The stability number 𝑁𝑁 was first introduced by Broms & Bennermark (1967) and is related to the 
extension of a plastic zone near the tunnel face (Panet & Sulem 2022).  

Table 1. Range of values for the parameters used in numerical simulations. 

Parameter 𝜈𝜈 𝜈𝜈𝑠𝑠 𝑑𝑑∗ 𝑅𝑅∗ 𝐸𝐸∗ 𝜙𝜙 𝜓𝜓 𝑁𝑁 
Value 0.25 0.2 1 10, 12.5, 15 0.05, 0.025, 

0.5, 0.75, 1 
20°, 25°, 
30°, 35° 

0°, 𝜙𝜙/3, 
𝜙𝜙 

1, 2, 5, 10 

 
As parameters 𝜈𝜈, 𝜈𝜈𝑠𝑠 and 𝑑𝑑∗ remain constant, they are not taken into consideration in the dataset used 
to train the model. Therefore, the total dataset is made of 5 input features (𝑅𝑅∗,𝐸𝐸∗,𝜙𝜙,𝜓𝜓,𝑁𝑁) and 2 
output features (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚∗  and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

∗ ).  

2.2 Bagging model 

Bagging (that stands for bootstrap aggregating) is a type of ensemble machine learning algorithm 
that was first introduced by Breiman (1996). It consists in combining the predictions from multiple 
machine learning models together to make better predictions than the individual ones. It is mostly 
used to reduce the variance of an individual model. Bagging is the application of the bootstrapping 
procedure (in statistics, bootstrapping means resampling with replacement) to a machine learning 
model.  

In this paper, bagging is applied to neural networks: multiple ANNs predictors (called weak 
learners or members) are trained on different random subsets (called bootstrap samples) of the 
training set. As every bootstrap sample can contain several times the same instance, each individual 
predictor is biased and therefore its final prediction error will be higher than the one of a unique 
model trained on the original training set. However, both bias and variance are reduced when we 
aggregate all the members together. Aggregation is simply taking the mean of the predictions of all 
predictors (see equation (2)). 

In this study, we consider 15 individual predictors. All of these members are ANNs with identical 
architecture which was obtained after conducting a hyperparameter study (using GridSearch method 
from Scikit-Learn library and given a validation set).  
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The final prediction error is calculated according to the following equation: 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1
𝑁𝑁
� |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |

𝑦𝑦𝑖𝑖∈𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡
 ;         𝑦𝑦𝚤𝚤� =

1
𝑁𝑁𝑏𝑏

� 𝑦𝑦𝚤𝚤𝑏𝑏�
𝑦𝑦𝑖𝑖∈𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡

(2) 

where 𝑀𝑀𝑀𝑀𝐸𝐸 stands for Mean Averaged Error, calculated over each example present in the test set, 𝑁𝑁 
is the total number of examples in the test set, 𝑁𝑁𝑏𝑏 is the number of members (15) and 𝑦𝑦𝚤𝚤𝑏𝑏�  is a single 
prediction made by a unique weak learner.  

To summarize, the steps of the algorithm used to apply bagging are listed below: 

1. Decompose the total dataset in a training set and a test set (80-20%). 
2. For 𝑖𝑖 = 1 to 𝑖𝑖 = 𝑁𝑁𝑏𝑏 = 15 ∶ 

o Create a subset of the training set (same size) using the bootstrapping procedure; 
o Train an individual member on this bootstrap sample; 

3. Calculate an average prediction from each weak learner given the test set using equation 
(2). 

The architecture found for the neural network is constituted of 3 hidden layers each one composed 
of 40 neurons with the LeakyReLU activation function. Ensemble predictions are compared to the 
ones obtained when using only one neural network trained on the whole training set (called “Unique 
model”). Finally, each neural network is trained over 150 epochs.  

3 RESULTS AND DISCUSSION 

 
Figure 1. Predictions using the bagging technique. 

Figure 1 shows the predictions calculated by the ensemble model in regards of the “true” value 
obtained by the numerical simulation. Figure 2 shows the evolution of the predictions according the 
number of members taken into account in the aggregation (orange continuous curve), every 
individual weak learner prediction (blue points) and the unique model prediction (red dotted line). 

Several observations can be made: (i) The model succeeds in obtaining accurate predictions of 
non-linear elastoplastic response with only few data points; (ii) Bias (final error) is diminished when 
using bagging compared to the predictions made by the unique model. It can be noticed that the 
prediction errors of the weak learners are higher than the one of the unique model which was expected 
since every bootstrap sample is biased; (iii) Model predictions are more stable with bagging: about 
7 members are sufficient to give accurate and reliable predictions compared to every weak learner. 
Variance is therefore reduced; (iv) Training the model took a few minutes and predictions took a few 
seconds. It may be convenient in practice and serve as a rapid estimation tool; 
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However, some limits and drawbacks appear: (i) There is a zone that presents a lack of data for 
the displacement: this requires to extend the dataset; (ii) As mentioned in the introduction, the amount 
of data needed to obtain good accuracy is problem dependent: if a more complex model is used for 
the ground, it is expected that the size of the dataset should be larger to achieve the same accuracy 
(Furtney et al. 2022); (iii) This model works only for interpolation: testing parameters outside the 
range of values used for training may result in high error outliers. (iv) Since it is based on a synthetic 
dataset, the model can only be as good as the numerical model. 

 
Figure 2. Ensemble predictions in regards of the number of members versus each weak learner prediction. 

4 CONCLUSION 

An ensemble machine learning approach for training artificial neural networks is presented in order 
to estimate maximum stresses/displacements at the wall a supported tunnel excavated in an 
elastoplastic ground. The results show that the model performs well with the small dataset used in 
this study and can capture the complex behavior of the ground. Based on a synthetic dataset, the 
ensemble method is able to make accurate and reliable predictions of both the maximum hoop stress 
and displacement that occur in the tunnel. Both variance and bias are reduced compared to a unique 
model. Thus, combining multiple ANNs could be considered as a useful alternative to three-
dimensional modeling as it can be used as a quick and reliable estimation tool, which is of prime 
interest for applications in the engineering field. 

However, high prediction errors could be obtained if the input parameters do not belong to the 
range used during training. Besides, one must be aware that the amount of data needed for training 
depends strongly on the complexity of the problem to be solved. Still, as they do not request high 
computational cost, neural networks could serve as surrogate models and help engineers as a 
complement to numerical simulations. Furthermore, this analysis can be extended by taking into 
account the time-dependent behavior of the ground.  
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