
ABSTRACT: Rainfall-induced landslides are one of the major natural catastrophes causing heavy 
economic and human loses. In this study, a new numerical model is proposed by considering crack 
initiation and propagation and hydromechanical coupling. For the description of cracking process, a 
new phase-field model is developed for porous media with hydromechanical coupling process. In 
particular, a new evolution law is proposed by considering both tensile and shear cracks as well as 
mixed-mode. The effects of pore pressure and capillary pressure on cracking evolution are further 
taken into account. Moreover, the intrinsic permeability of rock is also modified by the induced 
cracks. The proposed model is implemented in the framework of finite element method. It is 
applied to the analysis of rainfall-induced landslides. An example based on real case is considered. 
Progressive deformation and cracking process is investigated and analyzed.  

Keywords: Cracking, Porous rocks, Phase-field method, Hydromechanical coupling, Rainfall-
induced landslides. 

1 INTRODUCTION 

Between 1995 and 2014, a total of 3,786 landslides were reported worldwide, resulting in 163,658 
deaths and 11,689 injuries (Haque et al. 2019). Over 50% of these landslides occurred in areas with 
a high risk of heavy rainfall. Various empirical models, such as those proposed by Knighton (1998) 
and McDonnell (1990), have been developed to assess the instability of rainfall-induced landslides. 
These models typically assume that slope stability is affected by triggering factors such as rainfall 
infiltration and are compared against limit conditions. However, the hydromechanical coupling and 
progressive cracking processes are often inadequately considered in such models (Kukemilks et al. 
2018 and Zhang et al. 2005). 

On the other hand, there are now lots of interest in using the numerical simulation to study the 
development of cracks which usually causes the instability of slopes. Although significant progress 
has been made in numerical methods, such as the enriched finite element method (EFEM) proposed 
by Oliver (1996) and the extended finite element method (XFEM) proposed by Moës et al. (1999), 
most of the methods mentioned above are primarily used to model the propagation of pre-existing 
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cracks, and the transition from diffuse damage (micro-cracks) to localized macroscopic cracks is 
still an open issue. One method that addresses this issue is the phase field method, which is based 
on the variational brittle fracture mechanics model proposed by Francfort & Marigo (1998) and 
numerically implemented by Bourdin et al. (2000). This method approximates sharp crack surfaces 
with a volumetric crack surface density function of an auxiliary damage variable and its gradient. 
The main advantage of the phase field method is its ability to describe the continuous transition 
from diffuse damage to localized cracks. 

For these reasons, a novel phase-field model with two independent damage variables is first 
introduced to better describe the tensile, shear and mixed cracks. The effective elastic properties of 
cracked materials are affected differently by open and closed cracks. The proposed phase-field 
method is further extended to partially saturated porous media in order to account for 
hydromechanical coupling. The proposed phase-field method is applied to a typical example of 
natural hazards, rainfall induced landslides. 

2 PHASE-FIELD METHOD FOR PARTIALLY SATURATED MEDIA 

This study concentrates on a cracked porous medium, which is partially saturated and comprises a 
solid skeleton (indexed as 𝑠𝑠), pore water (indexed as 𝑤𝑤), and pore air (indexed as 𝑔𝑔). The target 
here is to determine, throughout the loading history, the displacement fields of 𝒖𝒖 (including strains 
and stresses), the pore pressure (for both pore water and air), as well as the initiation and 
propagation of cracks inside. The current investigation is conducted in isothermal conditions. 

2.1 Regularized crack fields 

Indeed, most of geo-materials are subjected to complex loadings, where mixed cracks can be 
observed and generated by combined tensile and shear strains or stresses. In order to distinguish 
these complex cracking processes and effects of induced cracks, the phase-field (or damage field) 
is decomposed into 𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑠𝑠 respectively representing the tensile and shear crack variables. 
Therefore, it is easily to approximate the total crack area as: 

 𝐴𝐴Γ𝛼𝛼 = � d𝐴𝐴
Γ𝛼𝛼

≅ � 𝛾𝛾𝛼𝛼(𝑑𝑑𝛼𝛼 ,∇𝑑𝑑𝛼𝛼)d𝑉𝑉
Ω

 (1) 

Two scalar-valued functions 𝛾𝛾𝛼𝛼(𝛼𝛼 = 𝑡𝑡, 𝑠𝑠) denote the tensile and shear crack density. A common 
form was introduced in (Ambrosio & Tortorelli 1990) and it is adopted here: 

 𝛾𝛾𝛼𝛼(𝑑𝑑𝛼𝛼 ,∇𝑑𝑑𝛼𝛼) =
(𝑑𝑑𝛼𝛼)2

2𝑙𝑙𝑑𝑑
+
𝑙𝑙𝑑𝑑
2

|∇𝑑𝑑𝛼𝛼|2  ;    𝛼𝛼 = 𝑡𝑡, 𝑠𝑠 (2) 

2.2 Energy functionals for damaged partially saturated media 

2.2.1 Constitutive relations of undamaged porous media 

In landslide scenarios, the change in air pressure has generally less impact than that in water 
pressure. As a result, the air pressure change is here neglected. Water pressure can be positive in 
saturated conditions or negative in unsaturated conditions. Accordingly, the capillary pressure is 
equal to −𝑝𝑝𝑤𝑤. With this assumption, the poroelastic constitutive model for undamaged materials 
can be expressed as follows (Coussy 2010): 
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 �
𝑑𝑑𝝈𝝈0 = ℂ𝑏𝑏0:𝑑𝑑𝜺𝜺 − 𝑏𝑏𝑆𝑆𝑤𝑤𝑑𝑑𝑝𝑝𝑤𝑤𝚰𝚰

𝑑𝑑𝑝𝑝𝑤𝑤 = Μ𝑤𝑤𝑤𝑤 �−𝑏𝑏𝑆𝑆𝑤𝑤𝑑𝑑𝜺𝜺𝑣𝑣 + �
𝑑𝑑𝑚𝑚𝑤𝑤

𝜌𝜌𝑤𝑤
��

 (3) 

Here 𝑆𝑆𝑤𝑤 is the saturation degree of pore water, which is defined by van Genuchten (1980) as:  

 𝑆𝑆𝑤𝑤 = 𝑆𝑆𝑟𝑟 + 𝑆𝑆𝑒𝑒(1− 𝑆𝑆𝑟𝑟), 𝑆𝑆𝑒𝑒 = [1 + (𝛽𝛽𝑝𝑝𝑐𝑐)𝑛𝑛]−𝑚𝑚 (4) 

𝑆𝑆𝑟𝑟 is a residual value of degree of saturation, and 𝛽𝛽(1/kPa), 𝑛𝑛 and 𝑚𝑚(= 1 − 1/𝑛𝑛) are curve fitting 
parameters of the soil water characteristic curve (SWCC). 

2.2.2 Energy functionals for damaged partially saturated materials 

Due to the presence of fluid, the total energy for damaged partially saturated materials should 
include two parts, one is the stored energy which is conventionally seen as sum of elastic strain 
energy of porous medium and that related to fluid mass change, and the other is that used for cracks 
creation.  

 𝐸𝐸(𝜺𝜺,𝑚𝑚𝑤𝑤 ,𝑑𝑑𝑡𝑡 ,𝑑𝑑𝑠𝑠) = � �𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒(𝜺𝜺,𝑑𝑑𝑡𝑡 ,𝑑𝑑𝑠𝑠) + 𝜓𝜓𝑒𝑒𝑓𝑓(𝜺𝜺,𝑚𝑚𝑤𝑤 ,𝑑𝑑𝑡𝑡 ,𝑑𝑑𝑠𝑠)�d𝑉𝑉
Ω

+ 𝐷𝐷𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 (5) 

Based on constitutive relation of undamaged materials, the stored elastic energy of porous medium 
𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒 can be expressed as a function of the Bishop’s effective stress tensor. Meanwhile, in order to 
define physically based criteria for the growth of tensile and shear cracks, the effective elastic 
stored energy is decomposed into a positive (tensile) part and a negative (compression) part and 
degraded by a specific degradation function. Consequently, the effective stored energy density for 
damaged materials is rewritten as: 

 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒(𝜺𝜺,𝑑𝑑𝑡𝑡 ,𝑑𝑑𝑠𝑠)  =  
1
2
𝑔𝑔(𝑑𝑑𝑡𝑡)𝝈𝝈+𝑏𝑏 : 𝜺𝜺 +

1
2
𝑔𝑔(𝑑𝑑𝑠𝑠)𝝈𝝈−𝑏𝑏 :𝜺𝜺  (6) 

The degradation function 𝑔𝑔(𝑑𝑑𝛼𝛼) = (1 − 𝑑𝑑𝛼𝛼)2 proposed in (Miehe et al. 2010) is adopted here. The 
effective stress tensor is decomposed into 𝝈𝝈+𝑏𝑏  the tensile and 𝝈𝝈−𝑏𝑏   the compressive stress tensors, 
respectively: 

 𝝈𝝈±
𝑏𝑏 = �〈𝜎𝜎𝑐𝑐〉±𝒏𝒏𝑐𝑐⨂𝒏𝒏𝑐𝑐

3

𝑐𝑐=1

  (7) 

Where  𝜎𝜎𝑐𝑐 is the principal stress and 𝒏𝒏𝑐𝑐 the principal stress direction. The operator 〈∙〉± is defined 
as: 〈∙〉± = (∙ ±|∙|)/2. On the other hand, in prior research (Aldakheel et al. 2021), it has been 
revealed  that fluid free energy plays a limited role in the cracking process. Therefore, the 
contribution of the fluid energy to the damage evolution can be neglected. Thus, one has: 

 𝜓𝜓𝑒𝑒𝑓𝑓(𝜺𝜺,𝑚𝑚𝑤𝑤,𝑑𝑑𝑡𝑡 ,𝑑𝑑𝑠𝑠) ≡ 𝜓𝜓𝑒𝑒𝑓𝑓(𝜺𝜺,𝑚𝑚𝑤𝑤)  =  
1
2

 𝑀𝑀𝑤𝑤𝑤𝑤 �𝑏𝑏𝑆𝑆𝑤𝑤𝜺𝜺𝒘𝒘 − �
𝑚𝑚
𝜌𝜌
�
𝑤𝑤
�
2

  (8) 

The dissipation for crack creation should include both of that used for tensile and shear cracks: 

 𝐷𝐷𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑔𝑔𝑐𝑐𝑡𝑡𝛾𝛾𝑡𝑡(𝑑𝑑𝑡𝑡,∇𝑑𝑑𝑡𝑡) + 𝑔𝑔𝑐𝑐𝑠𝑠𝛾𝛾𝑠𝑠(𝑑𝑑𝑠𝑠,∇𝑑𝑑𝑠𝑠)d𝑉𝑉
Ω

 (9) 
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2.3 Governing equations 

The evolution of each damage process is described using the variational approach introduced by  
Francfort & Marigo (1998), where the evolution of each damage field is governed by minimizing 
the total energy functional with respect to each damage variable. However, in rock materials, the 
shear cracking is physically driven by the maximum shear stress, and prevented by the compressive 
mean stress. In order to better reflect this mechanism, a hybrid formulation is adopted. Inspired by 
the classical Mohr-Coulomb criterion, an alternative driving energy based on the generalized shear 
stress is here introduced for the shear crack growth: 

 𝑊𝑊−
𝑒𝑒𝑒𝑒𝑒𝑒  ⟹𝑊𝑊−

𝑠𝑠 =
1

2𝐺𝐺 �
〈𝜎𝜎3𝑏𝑏〉− − 〈𝜎𝜎1𝑏𝑏〉−

2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜑𝜑
+
〈𝜎𝜎1𝑏𝑏〉− + 〈𝜎𝜎3𝑏𝑏〉−

2
𝑡𝑡𝑡𝑡𝑛𝑛 𝜑𝜑 − 𝑐𝑐�

+

2

  (10) 

Where 𝑐𝑐 and 𝜑𝜑 denote the cohesion and frictional angle of material. On the other hand, to ensure 
irreversibility condition �̇�𝛾𝛼𝛼 ≥ 0 and �̇�𝑑𝛼𝛼 ≥ 0, the concept of energy history function introduced in 
(Miehe et al., 2010b) is here adopted, which reads: 

 ℋ𝑡𝑡(𝑡𝑡) = max
𝜏𝜏∈[0,𝑡𝑡]

𝑊𝑊+
𝑒𝑒𝑒𝑒𝑒𝑒(𝜏𝜏) , and     ℋ𝑠𝑠(𝑡𝑡) = max

𝜏𝜏∈[0,𝑡𝑡]
𝑊𝑊+

𝑠𝑠(𝜏𝜏)  (11) 

Consequently, the governing equation of phase-field variable is modified to: 

 −2(1− 𝑑𝑑𝛼𝛼)ℋ𝛼𝛼 − 𝑔𝑔𝑐𝑐𝛼𝛼 �
𝑑𝑑𝛼𝛼

𝑙𝑙𝑑𝑑
− 𝑙𝑙𝑑𝑑div(𝛻𝛻𝑑𝑑𝛼𝛼)� = 0,     𝛼𝛼 = 𝑡𝑡, 𝑠𝑠  (12) 

The fluid flow in porous media is described by the Darcy’s conduction law and the mass balance 
equation. Together with the constitutive relations, it gives: 

 
𝑘𝑘𝑟𝑟𝑘𝑘𝑝𝑝
𝜇𝜇𝑤𝑤

𝑑𝑑𝑑𝑑𝑑𝑑(∇𝑝𝑝𝑤𝑤 − 𝜌𝜌𝑤𝑤g) =
1

𝑀𝑀𝑤𝑤𝑤𝑤

∆𝑝𝑝𝑤𝑤
∆𝑡𝑡

+ 𝑏𝑏𝑆𝑆𝑤𝑤
∆𝜀𝜀𝑖𝑖𝑖𝑖
∆𝑡𝑡

  (13) 

where 𝑘𝑘𝑝𝑝 is the saturated permeability, 𝜇𝜇𝑤𝑤 is the dynamic water viscosity , g the gravitational 
acceleration and. 𝑘𝑘𝑟𝑟 is the relative permeability which is related to the saturation degree: 

 𝑘𝑘𝑟𝑟 = �𝑆𝑆𝑤𝑤 �1 − (1 − 𝑆𝑆𝑤𝑤
1/𝑚𝑚)𝑚𝑚�

2
  (14) 

3 NUMERICAL MODELING EXAMPLES AND RESULTS 

3.1 Description of numerical model 

The example of slope instability studied here is located along the Renbo Expressway in mid-eastern 
Guangdong Province, China. The tropical climate in this region has led to frequent landslide 
disasters caused by rainfall, as reported by geological surveys. A typical cross-section from Li et al. 
(2020) has been chosen as an example to study the mechanism of rainfall induced slope instability. 

The numerical simulation domain, after excavation, has a length of 130m and a height of 102m, 
as depicted in Figure 1(a). The mechanical parameters are listed in Table 1, and the hydraulic 
characteristics of the unsaturated material are shown in Figure 1(b). The model consists of 163522 
triangular elements, with a region of refinement around the slope surface. The minimum element 
size is approximately 0.1m, which results in a reasonable value of 𝑙𝑙𝑑𝑑=0.2m. 

The left and right boundaries have been fixed for horizontal displacement, while the bottom is 
fixed as well. The initial distribution of pore water pressure is assumed to be linear with the 
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groundwater level located at an elevation of 133m above sea level. A constant rainfall infiltration is 
simulated as an extreme condition where a rainfall intensity of 12mm/day is sustained for 20 days 
on the slope surface. 

              
Figure 1. (a) Geometrical domain; (b) Hydraulic characteristics curves. 

Table 1. Mechanical parameters input. 

Section Material Unit weight 
[kN/m3] 

Young’s Modulus 
[MPa] 

Poisson’s 
ratio 

Permeability 
[m/day] 

I Silty clay 21 30 0.35 0.0866 

II Highly weathered 
siltstone 22 100 0.32 0.0168 

III Moderately weathered 
siltstone 24 200 0.30 0.000648 

3.2 Main results 

 
Figure 2. Distribution of shear and tensile failure within the slope with different rainfall infiltration. 

Presented in Figure 2 are the onset and propagation of shear and tensile cracks in this slope, which 
undergoes three main stages of failure. In the initial stage, shear cracks emerge primarily around 
the foot of the slope and the toe bulging due to concentrated stress from gravity. Shear cracks 
develop faster at the foot of the slope than the toe at other excavation depths, while tensile damage 
remains moderate. Subsequently, as localized shear damage propagates, some tensile cracks arise 
in the crest of the first excavation slope surface, connecting to shear cracks from the toe of the first 
excavation slope surface and leading to the first slope failure. With continuous rainfall infiltration, 

-1697-



both tensile and shear cracks further develop, potentially leading to a second failure of the second 
excavation slope surface. 

4 CONCLUSION 

In this paper, a novel phase-field method has been introduced to model the onset and propagation 
of cracks in partially saturated rock materials. Two independent damage variables have been 
incorporated, which evolve via two independent processes and are solved using two coupled 
boundary value problems. The new phase-field method is capable to describe the onset and growth 
of tensile, shear, and mixed cracks under varying loading conditions. The proposed method has 
been successfully applied to analyze landslides induced by rainfall in partially saturated media. It 
can describe the initiation and propagation of localized damage zones and cracks resulting from 
rainfall, with shear cracking being the primary failure mechanism of landslides. The numerical 
results are in good qualitative agreement with the field observations. 
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