
ABSTRACT The aim of this paper is to investigate the effect of the brittleness indices (B1 and B2) 
on the rockburst damage potential classification performance using Artificial Neural Network 
classifiers.  Rockburst incident cases from seismically active mines are used to implement the 
proposed ANN models. Several scenarios were considered. The performance of the models was 
evaluated and the results indicated that the brittleness index has a great influence on the predictive 
performance of the models, especially for severe rockburst cases. The classification rates vary 
between 60-88% depending on the scenarios. Overall, 𝐵𝐵2 showed a slight higher impact on the 
model accuracies compared to 𝐵𝐵1.  The classification results showed some superiority over existing 
studies. It is concluded the results of the present study can be useful in managing ground prone to 
rockburst. 

Keywords: Rockburst potential damage, rock brittleness, ANN classifiers, rockburst intensity, mine 
seismicity. 

1 INTRODUCTION  

The increasing demands for minerals today have compelled many mining operations to go deeper. 
Some mines have been operating at more than 3 km depth already (Blake & Hedley 2003; 
Hasegawa et al. 1989); Nussbaumer (2000). Nevertheless, one of the major challenges with deep 
mines is the likelihood of seismic events occurrence due to the mining activities (Nussbaumer 
2000). Rockburst is defined as a sudden release of energy stored in a surrounding rock mass under 
high-stress conditions (Kaiser & Cai 2013). This results in excavation damages that could present 
serious threats to the safety of mine workers, equipment and mine profitability. Based on these 
considerations, rockburst is one of the fundamental challenges confronting mining engineers that 
calls for intensive research aimed at investigating the rockburst mechanism, prediction of rockburst 
intensity, and control measures (He et al. 2012). 

Despite the extensive research on the rockburst phenomenon, accidents and fatalities associated 
with rockburst still occur, especially in seismically active mines, threatening the profitability of 
underground mining operations. Pan et al. (2018) noted that current theoretical knowledge about 
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the rockburst is a typical black box. Existing methods of predicting rockburst intensity suffer from 
the lack of fundamental understanding of factors triggering the rockburst which eventually leads to 
the poor reliability of the many existing rockburst intensity prediction models. Over the past few 
decades, various researchers and practitioners have intensively studied rockburst mechanisms and 
investigated ways to predict its damage potential necessary for an adequate management of 
rockbursts (He et al. 2012). The concept of Rockburst Damage Potential (RDP) was proposed by 
Heal et al. (2006) to quantify the vulnerability rockburst during excavation as input parameters 
obtained from monitoring data such as stress conditions, ground support, span and seismic 
activities. Furthermore, several techniques have been employed for estimating and predicting 
rockburst intensity, these include stress criteria classification, in situ testing, empirical charts and a 
wide range of predictive models based on microseismicity data (Heal 2010; N. Li et al. 2020; X. Li 
et al. 2021; Maxutov & Adoko 2021; Zhou et al. 2012; Zhou et al. 2016). Nevertheless, one of the 
drawbacks of these models is that the rock mass brittleness index which is the critical parameter 
linked with rockburst, is not properly accounted for. Further studies are needed in this regard. 
Therefore, this paper aims to investigate the effect of the rock brittleness on the rockburst damage 
potential. 

2 ROCKBURST DATA DESCRIPTION  

In this paper, cases of rockburst incidents were compiled from 13 Australian and Canadian mines 
and consist of 254 cases of reported rockbursts (Heal, 2010). The selected rockburst parameters 
are: stress conditions (E1), ground support system capacity (E2), excavation span (E3), effect of 
geological structure (E4), peak particle velocity (PPV). In addition to these, the tensile strength σt 
and the compressive strength σc of the rock mass were determined on the basis of the available 
filed reports, to allow calculating the brittleness indices B1 and B2 defined as:  𝐵𝐵1 = 𝜎𝜎𝑐𝑐 𝜎𝜎𝑡𝑡⁄ ; 𝐵𝐵2 =
(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑡𝑡)/(𝜎𝜎𝑐𝑐 + 𝜎𝜎𝑡𝑡).  

The dependent parameter in this study is the rockburst damage scale (RDS) which is being 
classified. The RDS is defined as R1, R2, R3, R4, and R5; R5 being the most severe. The 
distribution of the data is shown in Table 1. As it can be seen the RDS is unevenly distributed 
(imbalanced) with more non-severe rockburst cases, 63 % of R2 and R3 combined together and 
37% of severe rockburst cases (R4 and R5). A linear regression showed that the variables have a 
very poor linear correlation with the RDS. In order to reduce the dimensionality of the data for 
better efficiency, the damage initiation factor (DIF) and depth of failure factor (DFF) defined as the 
ratio of E1/E2 and the ratio of E3/E4, respectively, are also used as input parameters. A sample of the 
data is provided in Table 1. The rockburst catalog can be found in Heal (2010). The rockburst 
scales were merged to reduce the unbalance. In this study, 5 scenarios were investigated in order to 
highlight how the number of rockburst scales impacts the results as follows; 1st scenario: (R2, R3, 
R4, R5); 2nd scenario: (R2+R3, R4, R5); 3rd scenario: (R2, R3+R4, R5); 4th scenario: (R2, R3, 
R4+R5); and 5th scenario: (R2+R3, R4+R5).   

Table 1. Data sample. 

𝑬𝑬𝟏𝟏/𝑬𝑬𝟐𝟐 𝑬𝑬𝟑𝟑/𝑬𝑬𝟒𝟒 𝑷𝑷𝑷𝑷𝑷𝑷 𝑩𝑩𝟏𝟏 𝑩𝑩𝟏𝟏  Actual  Target 
Vectors 

12.00 8.40 0.50 61.64 0.97 R4 (0, 0, 1, 0) 
7.50 8.40 0.40 61.64 0.97 R2 (1, 0, 0, 0) 
10.00 12.00 1.11 58.21 0.97 R4 (0, 0, 1, 0) 
9.38 3.80 1.76 50.80 0.96 R3 (0, 1, 0, 0) 
6.00 21.00 1.77 50.80 0.96 R2 (1, 0, 0, 0) 
4.50 18.20 2.22 53.90 0.96 R5 (0, 0, 0, 1) 
4.50 18.20 2.22 53.90 0.96 R4 (0, 0, 1, 0) 
7.41 8.00 3.52 56.06 0.97 R5 (0, 0, 0, 1) 
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7.41 5.40 1.17 48.92 0.96 R3 (0, 1, 0, 0) 
7.41 10.00 1.76 48.92 0.96 R2 (1, 0, 0, 0) 
11.00 8.00 2.50 29.68 0.94 R5 (0, 0, 0, 1) 

3 RESULTS AND DISCUSSIONS 

3.1 Model configurations and training    

The RDP model was developed using an artificial neural network (ANN) on MATLAB software. 
The Patternnet function was used to generate the network. The data were randomly divided into 
three: 70%, 15%, and 15%, as training, validation, and testing datasets, respectively as suggested 
by other researchers. It is worth mentioning that the main objective behind using both validation 
and testing is to avoid overfitting. The input data for the modeling included the parameters 
described in the previous section. The targets were the RDS values which have been assigned as 
orthogonal vectors (with 1 and 0 as components) because of the classification task. The number of 
neurons varies from 2 to 200 and hidden layers from 1 to 3. A trial-and-error method was 
implemented with different configurations till the optimal model was found. Using fewer nodes 
than possible was necessary in order to avoid overfitting. Logistic sigmoid (Logsig) and softmax 
transfer functions were applied to the hidden and output layers, respectively. Usually, the softmax 
function is used by neural networks for multi-classification problems, which returns output 
between 0 and 1. 

A screenshot of the model structure is shown in Figure 1. It can be seen that the model structure 
in Figure 10 consists of 3 nodes for input variables, 2 hidden layers with 20 nodes in each for 
training, and 3 output nodes corresponding to the 2nd scenario without brittleness. Figure 2 shows 
an example of the model validation. It can be seen that the best validation performance 
corresponding to a loss of 0.19 at epoch 22.   

 
Figure 1. The architecture of the ANN model. 

 
Figure 2. Example of validation performance of the model. 
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3.2 Classifications  

Table 2 shows a sample of the classification corresponding to 1st scenario. As it can be seen, the 
models failed to correctly classify the 𝑅𝑅3 cases. Overall, despite the accuracy of prediction being 
between 50 and 60%, most of the 𝑅𝑅3 cases were misclassified as 𝑅𝑅2 class. So, for example, when 
B1 is considered in the model, only 13 𝑅𝑅3 cases out of 48 cases were properly classified. Such 
misclassification may occur due to the imbalanced dataset. 𝑅𝑅2 rockburst cases account for about 
half of the observations, therefore the trained model tends to be biased toward predicting correctly 
R2 class.  

Table 2. Sample of the confusion matrix illustrating the misclassification patterns. 

 Target classes (without brittleness)  Target classes (with 𝐵𝐵1) 
𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 Total 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 Total Predicted as 

𝑅𝑅2 103 32 23 4 63.6% 99 25 16 2 69.7% 
𝑅𝑅3 2 9 2 2 60.0% 11 13 14 8 28.3% 
𝑅𝑅4 7 3 33 7 66.0% 5 9 29 6 59.2% 
𝑅𝑅5 4 4 5 14 51.9% 1 1 4 11 64.7% 

Total 88.8% 18.8% 52.4% 51.9% 62.6% 85.3% 27.1% 46.0% 40.7% 59.8% 

3.3 Performance evaluation  

In addition to the misclassification rate, the performance indictors used to evaluate the models 
included, precision, recall and F1score as defined in Equations 1-3. In these equations TP, FP and FN 
stand for: true positive, false positive and false negative, respectively. 
          

                    ( ) TPp precision
TP FP

=
+

           (1) 

                    ( ) TPr recall
TP FN

=
+

          (2) 

                                                          1 2score
prF

r p
==

+
                       (3) 

The TP, FP and FN values obtained from the confion matrices were used to calculate these 
performance indicators. The results for the 1st and 5th scenarios, are provided in Tables 2 and 3, 
respectively. In the 1st scenario, R3 class has been poorly classified regardless of the brittleness. In 
the 5th scenario, the effect of the brittleness is clear with an increase of 4-6% of the Fscore.  

Table 2. Performance evaluation for the 1st scenario.  

RDS 
No Brittleness 𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐 

Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 
𝑅𝑅2 63.6% 88.8% 74.1% 69.7% 85.3% 76.7% 66.0% 90.5% 76.4% 
𝑅𝑅3 60.0% 18.8% 28.6% 28.3% 27.1% 27.7% 61.5% 16.7% 26.2% 
𝑅𝑅4 66.0% 52.4% 58.4% 59.2% 46.0% 51.8% 54.8% 54.0% 54.4% 
𝑅𝑅5 51.9% 51.9% 51.9% 64.7% 40.7% 50.0% 65.0% 48.1% 55.3% 
Average 60.4% 53.0% 53.3% 55.5% 49.8% 51.6% 61.8% 52.3% 53.1% 
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Table 3. Performance evaluation for the 5th scenario. 

RDS 
No Brittleness 𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐 

Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Precision Recall 𝑭𝑭𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 
𝑅𝑅2 + 𝑅𝑅3 82.4% 93.9% 87.7% 86.8% 92.1% 89.3% 87.6% 95.1% 91.2% 
𝑅𝑅4 + 𝑅𝑅5 85.1% 63.3% 72.6% 83.8% 74.4% 78.8% 89.5% 75.6% 81.9% 
Average 83.8% 78.6% 80.2% 85.3% 83.3% 84.1% 88.6% 85.4% 86.6% 

3.4 Discussions  

Overall, all models indicate an increase in the classification rate with the decrease in RDS classes. 
There were 3 scenarios with 3 RDS classes. The 𝐹𝐹1𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 of 𝑅𝑅3 class is very low for scenarios 1 and 
3, where the 𝑅𝑅3 the class was not combined with other classes. However, combining the 𝑅𝑅2 and 𝑅𝑅3 
classes significantly improved the accuracy of the models. On the other hand, the results were also 
affected by the amount of data (unbalanced data). The maximum accuracy level achieved with 
scenario 5 was 88.2 % and the 𝐹𝐹1𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 was 86.6 %. These results showed superiority over existing 
works in which the same data were used (Zhou et al. 2016). 

It can be also observed that by incorporating the brittleness indices, the model performance has 
improved. Particularly, the models have shown increased accuracy and precision for higher 
rockburst damage scales, indicating that the rock brittleness is an important contributor to the 
rockburst intensity. Thus, for non-severe rockburst (𝑅𝑅2 and its combinations) the increase in 
𝐹𝐹1𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 ranged from 1.4 % to 13.3 %, whereas the increase in 𝐹𝐹1𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 for severe rockburst cases 
(𝑅𝑅5 and its combinations) was about 3.5-27.9 %. On the other hand, there were also cases when the 
prediction accuracy was lower for the models considering the brittleness indices, therefore the 
statement above might not work for all cases but represent the overall picture. In addition to this, 
the influences of brittleness indices were also compared. In most cases, 𝐵𝐵2 has a tendency to show 
better results compared to 𝐵𝐵1.   

4 CONCLUSIONS 

The aim of this paper was to investigate the effect of the brittleness indices (B1 and B2) on the 
rockburst damage potential classification performance. ANN classifier models were implemented. 
The performances of the model were evaluated via the classification rate, precision, recall and 
F1score.  

It was found that ANN classifiers are useful tools to study the RDP. The optimal network 
structure was found to be two hidden layers with 20 neurons in each layer. Overall accuracy (i.e. 
success rate) varies between 60-88% depending on the scenarios. These results show superiority 
over existing studies. The confusion matrices showed that 𝑅𝑅3 is the most misclassified RDP class. 
Most 𝑅𝑅3 cases were recognized as 𝑅𝑅2. Nevertheless, it was not due to data size; it seemed to have 
derived from the definition of the 𝑅𝑅3 scale. On the other hand, 𝑅𝑅2, 𝑅𝑅4 and 𝑅𝑅5 are the least 
misclassified in that order.  

In general, the model performances increased with the decrease in the number of classes of 
RDP. This result is in agreement with expectations because the ANN found it easier to recognize 
fewer labels. However, it is worth mentioning that the data size of each class also impacts the 
results. The results indicated a variable effect of the brittleness on the accuracy of the results 
depending on the scenarios and the brittleness indices. Therefore, it is suggested the incorporation 
of the brittleness indices in the establishment of RDP tools.  
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