
ABSTRACT: The combined finite-discrete element method (FDEM) has been extensively used for 
rock fracturing simulation. The zero-thickness intrinsic cohesive elements are commonly 
implemented in FDEM and pre-inserted in the rock model between adjacent finite elements prior to 
simulation. However, because of the different constitutive laws for cohesive and finite elements, the 
rock model domain may deform like a discontinuum in the elastic stage (abbreviated as dFDEM). 
This could cause unrealistic material deformation and also reduce computational efficiency. Here, 
we propose a novel node binding algorithm to ensure the continuum behavior of materials prior to 
fracture onset (abbreviated as cFDEM), which can also automatically achieve the explicit separation 
of fracture surfaces without using complex node splitting algorithm. We validate the robustness of 
the proposed cFDEM and demonstrate its advantage compared to dFDEM. The work provides a 
novel perspective for rock fracturing simulation in FDEM. 

Keywords: Combined finite-discrete element method (FDEM), Node binding algorithm, Rock 
fracture, Numerical simulation, Cohesive zone model. 

1 INTRODUCTION  

The combined finite-discrete element method (FDEM) (Munjiza, 1992), which merges FEM-based 
analysis of continua with DEM-based contact processing for discontinua, provides an effective 
solution to simulate the fracturing behavior in rocks. Generally, the FDEM is realized using the 
intrinsic cohesive zone model (ICZM) with a traction-separation law, in which the modeling domain 
is first discretized into a series of finite elements, and then cohesive elements are inserted into the 
common boundaries between adjacent finite elements (Munjiza, 2004).  

Because finite elements and intrinsic cohesive elements use different types of constitutive laws, 
they deform at different rates even in the elastic deformation stage, and thus may cause discontinuous 
strains across adjacent finite elements and make the originally continuous model domain behave like 
a discontinuum before fracture onset (for convenience, it is referred to as dFDEM hereafter. Since 
the inherent stiffness difference between the intrinsic cohesive elements and the solid finite elements, 
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the dFDEM usually yields a smaller overall material elastic modulus than the true value, i.e., stiffness 
reduction, or the so-called artificial compliance problem (Xu et al., 2022).  

To overcome the aforementioned deficiencies in traditional dFDEM, Fukuda et al. (2020) recently 
introduced the extrinsic cohesive zone model (ECZM) in FDEM, where cohesive elements are 
adaptively inserted between adjacent finite elements. Compared with dFDEM, this type of FDEM 
realization is more continuum-oriented, and is thus abbreviated as cFDEM for later reference. 
However, the adaptive insertion of cohesive elements requires a robust algorithm for splitting the 
local nodes between adjacent finite elements.  

To circumvent the disadvantages of the ICZM-based dFDEM and the ECZM-based cFDEM, we 
propose a novel 2D realization of cFDEM using the cohesive zone model implemented in our in-
house FDEM code – Pamuco. Specifically, similar to dFDEM, we first discretize the numerical 
model domain into finite elements and re-joint them with cohesive elements; then, we use a node 
binding scheme, in a master-slave manner, to bind nodes that share the same original coordinates. 
The proposed cFDEM realization suppresses the calculation of cohesive elements prior to fracture 
onset, which ensures the continuum behavior of the model domain in the elastic stage. When a certain 
strength criterion is reached, the pre-inserted cohesive element will be invoked. Meanwhile, the node 
binding lists will be automatically updated to accommodate the explicit separation of fracture 
surfaces. Essentially, the proposed cFDEM inherits the merits of both ICZM and ECZM, but avoids 
their shortcomings.  

2 FORMULATIONS OF THE PROPOSED CFDEM 

In this section, we first propose a novel node binding scheme that ensures the equivalent continuum 
behavior of the model domain in the elastic deformation stage. Following this, we demonstrate the 
realization of fracture initiation and propagation in cFDEM.  

2.1 Elastic deformation and node binding scheme 

To avoid frequent updating of element topology information when new fractures are initiated in the 
proposed cFDEM, we first borrow the strategies used in the ICZM-based dFDEM for element 
topology processing. Taking the model presented in Figure 1 for example, we discretize the whole 
continuous model domain into six triangular finite elements, and then separate them into independent 
ones (without node sharing) (see Figure 1b).  

To prepare for the node binding scheme in a later stage, we also reserve the mapping information 
from the original nodes before model discretization (denoted as master nodes, e.g., Node i in Figure 
1a) to the corresponding new nodes after model discretization (denoted as slave nodes, e.g., Nodes 0 
to 5 in Figure 1b) in a master-slave manner. Each master node corresponds to several slave nodes, 
and together they form a master-slave group. This mapping information between the master and slave 
nodes can be saved in a list such as 0→i, 1→i, …, 5→i (Figure 1c). If a master node is located inside 
the model (i.e., not connected to any model boundaries, e.g., Node i), all its slave nodes will be stored 
in a circular linked list according to their relative positions, e.g., 0→1→2→3→4→5→0 (Figure 1c). 
However, if a master node is located on the model boundary (e.g., Node j), its slave nodes (e.g., 
Nodes 6, 7) can be stored in an open linked list, e.g., 6→7. After model discretization, the original 
mesh topology information will be abandoned and all later computations are conducted only based 
on the new element topology.  

To avoid the discontinuous elastic deformation similar to that in the ICZM-based dFDEM, we 
suppress the functionality of pre-inserted cohesive elements during the elastic stage by binding the 
slave nodes in each group. In other words, the slave nodes in the same group will displace together 
with their master node, which guarantees pure continuous deformation in areas without yield 
surfaces. 
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Figure 1. Mesh discretization and re-join of triangular finite elements by cohesive elements. Nodes 0 to 5 are 

slave nodes and are bound together as a group identified by a master Node i located inside the model; 
similarly, slave nodes 6 and 7 are also bound together and identified by another master Node j located on the 

model boundary.  

2.2 Fracture initiation and propagation 

To simulate fracture initiation and propagation, we use the Mohr-Coulomb and maximum tensile 
strength criteria to simulate both the shear and tensile failures in cFDEM. When a pre-inserted 
cohesive element is invoked and marked as a yield surface, the master-slave node mapping list and 
the two groups of slave node linked lists need to be updated accordingly. Continuing with the 
example shown in Figure 1, and focusing on the master Node i, once the cohesive element between 
Elements E4 and E5 becomes a yield surface, the connection between the slave Nodes 3 and 4 will be 
cut out, and the previous circular linked list becomes an open linked list, such as 4→5→0→1→2→3 
(Figure 2a); however, the slave Nodes 0 to 5 are still in the same group and mapped to the same 
master Node i at this time, since they are located at a fracture tip inside the model and have to be 
enforced to displace together. As the model evolves and another cohesive element is invoked, say, 
the one between Elements E6 and E1, the connection between the slave Nodes 0 and 5 will again be 
cut out, and the previous open linked list becomes two open linked lists, i.e., 0→1→2→3 and 4→5 
(Figure 1b). Then, the slave Nodes 0 to 5 are divided into two groups, and they are respectively 
mapped to a new master Node k and the old master Node i (Figure 1b). Further invocation of cohesive 
elements, e.g., the one between Elements E2 and E3 shown in Figure 1c, can be realized by repeating 
the above procedure. The other nodes of these invoked cohesive elements should also be processed 
at the same time in a similar manner.  

It can be seen that only when a slave node linked list to be cut out is an open list, i.e., the 
corresponding master node is either located on the model boundaries or connected to an existing 
yield surface, a new master node is needed to update the master-slave node mapping list and the slave 
node group lists. Then, the cohesive element starts to participate in the computation, and its 
mechanical behaviors are controlled by the traction-separation-based strain-softening laws similar to 
that in ECZM (Lei et al., 2021). 
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Figure 2. Schematic of updating the master-slave node mapping list and slave node group linked lists when 
cohesive elements become yield surfaces. The triangular finite elements are marked as E1, E2, E3, E4, E and 

E6 in clockwise order, and Nodes i, k and m are the master nodes used to bind the slave Nodes 0 to 5. 

3 VALIDATION AND COMPARISON 

In this section, first, a series of tests are performed to test the implementation accuracy of the Mohr-
Coulomb and maximum tensile strength criteria. Then, we demonstrate the advantages of the 
proposed cFDEM compared with the traditional dFDEM in terms of material stiffness. 

3.1 Implementation accuracy of strength criteria 

To test the implementation accuracy of the Mohr-Coulomb and maximum tensile strength criteria in 
the proposed cFDEM, a series of triaxial compression and direct tension tests are performed on a 
rectangular plate presented in Figure 3a-b, where the width and height of the specimen are 50 mm 
and 100 mm, respectively. The input parameters can refer to previous literature (Deng et al., 2021). 

The Mohr-Coulomb criterion in principal stress space is: 

 1 3
2 cos 1 sin
1 sin 1 sin
c ⋅ ϕ + ϕ

σ = + σ
− ϕ − ϕ

 (1) 

where c is the material cohesion, φ is the internal friction angle, and σ1 and σ3 are the maximum and 
minimum principal stresses, respectively. We vary the confining pressure (σ3) on the two sides of the 
model from 1 MPa to 6 MPa with a step of 1 MPa (compression positive), and obtain the 
corresponding peak strength (σ1). Note that the negative values of σ3 denote the confining pressure 
is tensile and the selection of loading rates for the problem fully considers the effect of element size 
and also ensures an acceptable computation time (Tatone and Grasselli, 2015). The simulated σ1-σ3 
relations, together with the theoretical curves of the Mohr-Coulomb and maximum tensile strength 
criteria, are plotted in Figure 3c, which demonstrates a great consistency between the two and thus 
verifies the capability of cFDEM in simulating tensile and shear failures of rocks.  
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Figure 3. Triaxial compression and direct tension tests. (a) Triaxial compression test. (b) Direct tension test. 
(c) Comparison between the cFDEM simulated σ1-σ3 relations and the theoretical curves of Mohr-Coulomb 

and maximum tensile strength criteria in principal stress space. 

3.2 Material stiffness 

As mentioned in previous works (Fan and Tadmor, 2019; Papoulia et al., 2003), the utilization of 
ICZM in dFDEM can reduce the overall effective modulus of materials (i.e., artificial compliance). 
Here, a square plate of 30 mm (Figure 4a) is employed to elucidate the material stiffness reduction 
in dFDEM before fracture onset. We gradually increase the tensile loads acting on both the top and 
bottom boundaries to σ = 1.0 MPa and then maintain them unchanged. Here, we use Young’s 
modulus E = 30 GPa, Poisson’s ratio ν = 0.27, and bulk density ρ = 2700 kg/m3 in the simulations.  

To compare the difference between dFDEM and the proposed cFDEM in terms of simulated 
material stiffness, we vary the ratio (N) between the intrinsic cohesive element penalty parameters 
and the prescribed Young’s modulus of finite elements (E = 30 GPa here) from 10 to 100, and 
calculate the ratio between the simulated macroscopic effective Young’s modulus (Eeff) and the 
prescribed Young’s modulus of finite elements, i.e., Eeff/E. The ratio Eeff/E with respect to N is shown 
in Figure 4b, which effectively demonstrates an overall material stiffness reduction in dFDEM, i.e., 
Eeff/E < 1. It can be observed that Eeff/E gradually increases with the increment of N, but still less than 
1 even for a very large N. Theoretically, the overall material stiffness in dFDEM has no reduction 
only when the intrinsic cohesive element penalty tends to be infinity; however, in practice, too large 
a cohesive penalty could lead to spurious traction force oscillations. While for the proposed cFDEM, 
as shown in Figure 4c, the simulated effective Young’s modulus is 30 GPa, which is the same as the 
prescribed Young’s modulus for finite elements, i.e., no material stiffness reduction occurs in our 
cFDEM model.  

4 CONCLUSIONS 

In this study, within the framework of cohesive zone model based FDEM, we have proposed a novel 
continuum-oriented FDEM (cFDEM) using an efficient node binding scheme for rock fracturing 
simulation. The proposed cFDEM inherits the merits of both ICZM and ECZM, but avoids their 
shortcomings, and thus provides a novel solution for a more efficient and effective simulation of 
brittle material evolution from continuum to discontinuum. However, the “time discontinuity” 
problem in the current FDEM is not well resolved due to the inconsistent constitutive models used 
for finite elements and cohesive elements in terms of nodal force calculation. Additional work, 
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referring to the extension of the node binding scheme to 3D rock fracturing simulation, will be 
reported in the near future. 

 
Figure 4. (a) Model setup for simulated material stiffness comparison. (b) The ratio Eeff /E varies with N in 

dFDEM. (c) Stress-strain curve under tensile loading in cFDEM.  
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