
ABSTRACT: Quantitative tunnel face risk assessment is the characteristic challenge of rock tunnel 
excavation projects. This study establishes a multi-source database and proposes a stacked deep 
learning method for the quantitative tunnel face risk assessment. Both contact and non-contact 
methods are used to collect various data sources such as face images, site geological information, 
and rock mass properties. Thirteen multi-source variables describing the rock tunnel faces were 
considered as inputs, and Rock Mass Rating (RMR) system was adopted to generate the target output. 
The proposed model architecture combines a range of well-performing models to make accurate 
predictions of the tunnel face rock mass rating. Overall, this study establishes a comprehensive tunnel 
face risk assessment framework that leverages various data sources and stacked deep learning. The 
experimental results from a tunnel project in China demonstrate that our stacking deep learning 
model performs well in assessing rock tunnel face stability. 
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1 INTRODUCTION 

Rock mass rating systems are commonly used in rock engineering to conduct qualitative assessments 
of the risk at tunnel faces. These assessments take into account the principal engineering features that 
affect rock structure to determine the overall stability of the surrounding rock (Tzamos & Sofianos, 
2007; Rehman et al., 2019). However, establishing a quantitative tunnel face risk assessment system 
is challenging due to the complexity and variability of rock masses encountered during tunnel 
construction. Accurately collecting and assessing multiple-source datasets is necessary to achieve 
this goal before proceeding to the next stage of construction. 

Unlike empirical models that consider a limited number of input feature parameters, data-driven 
methods incorporating multi-source input data (Zhou et al., 2021) can adapt to regional characteristic 
input parameters and provide objective target outputs for field engineers. Therefore, this study aims 
to establish a multi-source database of tunnel faces to facilitate the implementation of data-driven 
methods. By doing so, this approach can provide more reliable and objective assessments of tunnel 
face risk to support field engineers in making informed decisions. 
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In recent years, deep learning techniques have gained popularity as a data-driven method for 
assessing rock mass quality (Lary et al., 2016). The flexibility of deep learning methods makes them 
effective in approximating and solving complex nonlinear engineering problems. However, three 
significant challenges may hinder the effectiveness of a deep learning hypothesis, namely 
representation challenges with high bias, computational challenges with high computational 
variance, and statistical challenges with high variance (Dietterich, 2002). These issues can be 
addressed using stacked deep learning models (SDLs), which update a series of predictions through 
"voting" for the next iteration instead of seeking a single best hypothesis for a given dataset (Brown 
and Mues, 2012). 

This study aims to apply SDLs to conduct a multi-source data mining process of rock tunnel faces, 
which involves establishing the dataset, selecting appropriate deep learning algorithms, and 
determining optimal hyper-parameters. The Rock Mass Rating (RMR) system, which evaluates rock 
mass quality using a simple percentage measurement, serves as the benchmark. The experiments 
mainly employ tree-based deep learning models, such as Decision Tree (DT), Random Forest (RF), 
and Gradient Boosted Regression Tree (GBRT). To ensure a comprehensive comparison, a neural 
network-based model, namely Multiple Layers Perceptron (MLP), is also employed for performance 
evaluation. The tree-structured Parzen estimator (TPE), a Bayesian hyper-parameter optimization 
technique, is used to tune the hyper-parameters of the deep learning models. The prediction error of 
the k-fold cross-validation sets serves as the fitness function of the TPE algorithm for the deep 
learning models. 

Overall, this study provides a comprehensive approach to establishing a multi-source database for 
rock mass quality indicators using both contact and non-contact measurement methods. The proposed 
methodology can help improve the accuracy and efficiency of assessing rock mass quality, which is 
important for ensuring the safety and stability of tunnel engineering projects. 

2 MULTI-SOURCE DATABASE 

This study established a multi-source database for training, validating, and testing proposed rock 
mass quality indicators using tunnel face data from thirteen different tunnels in the Jiaozhou Bay 
Second Submarine Tunnel, Qingdao, China. The Rock Mass Rating (RMR) values computed by 
experienced site engineers were considered as the target output for the models. 

To calculate the RMR values, the six parameters of each tunnel face (uniaxial compressive 
strength (UCS), rock quality designation (RQD), groundwater condition (GW), joint spacing (JS), 
joint condition (JC), and orientation of discontinuities) were provided by the site engineers of the 
Jiaozhou Bay Second Submarine Tunnel project. A flowchart of the database establishment process 
is shown in Figure 1, which involves three main steps: multi-source data collection, determination of 
indicators, and database establishment. 

To collect raw data for the rock mass features, a photogrammetry-based method was used as a 
non-contact approach, which generated 3000 tunnel face images from over 130 excavation rock 
tunnel faces. These images were used to establish image datasets for the rock mass features, and 
specific deep learning frameworks were developed to extract the required data features through 
training, verification, and testing. Quantitative indicators based on non-contact measurement were 
obtained by statistical analysis of the extracted features. 

The uniaxial compressive strength (UCS) and weathering degree were obtained through contact 
measurement. A rock mass sample was gathered from each tunnel face, and an on-site uniaxial 
compression test was performed to measure the UCS of each sample. The weathering degree was 
evaluated by field investigations using a geological hammer and rebound instrument. Additionally, 
the tunnel depth and tunnel strike at each tunnel face were manually recorded by the field engineer. 

-525-



 
Figure 1. Establishment of multi-source datasets in rock tunnels. 

3 MODEL PERFORMANCE 

The architecture and learning process of a deep learning model is defined by its hyper-parameters. 
The choice of hyper-parameters significantly impacts the learning performance of deep learning 
models, which tend to have a higher number of hyper-parameters. Therefore, automatic hyper-
parameter optimization is crucial for training and validating stacked deep learning models (SDLs). 
The hybridization of hyper-parameter optimization and SDLs provides several advantages, including 
reduced model deployment effort, improved model performance, and increased reproducibility of 
results (Bergstra et al., 2013). 

In this study, we used the TPE algorithm to tune the hyper-parameters of three tree-based 
algorithms (DT, GBRT, and RF) and the MLP algorithm. The TPE algorithm optimizes the hyper-
parameters within a 'tree' structure and requires that the estimated hyper-parameters be independent 
of each other. We introduce the cost function f(x), which is expensive to evaluate, and the cheaper 
approximate function TPE. The goal is to maximize the target model at the point where the target 
value would be predicted. The expected improvement (EI) value is a standard approach that performs 
well and is intuitive. We obtained the optimized hyper-parameters through the training process and 
performed validation and evaluation on preassigned datasets using a 10-fold CV. 

Figure 2 shows the predicted results of the training and testing sets based on the hyper-parameter 
tuning process. The trained SDLs obtained all predicted results within a fraction of a second. We 
computed the performance indicators (MAE, RMSE, and R2) for the training and test sets recorded 
in Table 1. The TPE-GBRT algorithm had the most consistent predicted outputs for the measured 
outputs, followed by TPE-RF, TPE-DT, and TPE-MLP. The TPE-GBRT algorithm also showed the 
best prediction performance with the lowest values of MAE, RMSE, and R2. 

It should be noted that, variable importance is measured via examining the impact on the Gini 
index of the variations in the input variables. Then, the Gini indexes are normalized to get the relative 
variable importance. The results suggest that weak interlayer area, rock structure category, water 
inflow area and USC are the most sensitive variables affecting the RMR value. Although the variable 
importance values may vary for different tunnel sites, the proposed methodology at least provides a 
more objective manner for assessing the rock mass quality of the tunnel face. 
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Figure 2. Predicted rock mass RMR values by four SDLs. 

Table 1. Comparison of four algorithms to predict RMR. 

 
TPE-DT TPE-MLP TPE-RF GBRT 

MAE 4.52 4.94 3.14 3.16 

RMSE 5.174 6.061 3.931 3.722 

R2 0.64 0.5 0.79 0.81 

4 CONCLUSION 

This research aims to evaluate the performance of four machine learning (ML) algorithms commonly 
used to predict rock mass quality. The four algorithms include three tree-based deep learning models 
and one neural network-based model. The study consisted of four phases: database collection, 
algorithm selection, model robustness enhancement, and hyper-parameter optimization. Thirteen 
multi-source predictive variables were considered as input variables to construct the ultimate 
database. Bayesian optimization using TPE was utilized to optimize the hyper-parameters of the 
proposed deep learning algorithms. 

The results show that TPE-GBRT had the best agreement with the measured results for training 
and testing processes, followed by TPE-RF, TPE-DT, and TPE-MLP, respectively. The proposed 
multi-source data-driven method considers the geological characteristics of a particular tunnel site 
and enhances the objectivity of the rock mass classification system. The approach can effectively 
predict rock mass quality, providing valuable insights for engineering design and construction. 

It should be noted that the RMR is a hundred-mark system where all of the parameters are 
categorized and rated according to their impact on the stability of the tunnel. The grade of rock mass 
quality is evenly divided into five parts, among which the ranges [0, 20], (20, 40], (40, 60], (60, 80], 
and (80, 100] belong to grades V, IV, III, II, and I, respectively. A larger grade represents a poorer 
rock mass quality. In practice, unfavourable geological conditions draw more attention from field 
engineers. However, the importance of a global database is self-evident for a system that pursues 
robust discrimination. Therefore, datasets from different tunnel projects should be added 
continuously to the established database. An enhanced TPE-GBRT model can be trained and tested 
to improve its practical scope in future work. 
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