
ABSTRACT: Ever since Boltzmann’s landmark paper from 1874, integro-differential equations for 
viscoelasticity have been a cornerstone for reliable quantification of the time-dependent response of 
solid mechanical systems: their creep strains depend on the accumulated effect of all load events 
having taken place before. This naturally includes rock mechanics, both as regards its narrower 
meaning of rock creep testing, and its broader sense of creeping tunnel support systems such as 
shotcrete shells in the context of the New Austrian Tunneling Method. When the COVID-19 
pandemic evidenced often sobering performance of traditional epidemiological models [where the 
system response only depends on the current state of the system, and not on the entire history], the 
question arose whether the Boltzmann integro-differential equations may be as efficient for “virus 
loads”, as they have proved to be for classical mechanical loads. Evaluating infection and fatality 
data from more than 100 countries, this question was affirmatively answered. Here we go one step 
further, and discuss recently obtained results for “aging pandemics” in analogy to aging creep 
experienced in shotcrete systems where the material maturation due to the hydration reaction evolves 
at a similar pace as the creep strains do. We observe exponentially decaying fatality rates throughout 
the first thousand days of the COVID-19 pandemic, with a characteristic time of around 180 days in 
the case of Austria.  

Keywords: SARS-CoV-2, COVID-19, concrete creep, viscoelasticity, integro-differential equations, 
optimization. 

1 INTRODUCTION 

Ever since the landmark paper of (Boltzmann 1874), integro-differential equations for viscoelasticity 
have been a cornerstone for reliable quantification of the time-dependent response of solid 
mechanical systems, with the following basic concept: the creep strains at a particular point in time 
depend on the accumulated effect of all load events having taken place until this time point, i.e. on 
the entire load history. In other words, viscoelastic materials have a “memory”. This naturally 
includes rock mechanics, both as regards its narrower meaning of rock creep testing (Wang et al, 
2016), and its broader sense in terms of creeping tunnel support measures, from creep tests on cement 
paste (Irfan-Ul-Hassan et al, 2016), to shotcrete shells (Scharf et al, 2022; Ullah et al, 2010; Ullah et 
al, 2012) in the context of the New Austrian Tunneling Method (Rabcewicz, 1965). When the 
COVID-19 pandemic evidenced often sobering performance of traditional epidemiological models 
[where the system response only depends on the current state of the system, and not on its entire 
history (Kermack and McKendrick, 1927; Fanelli & Piazza, 2020)], the question arose whether the 
Boltzmann integro-differential equations may be as efficient for “virus loads”, as they have proved 
to be for classical mechanical loads. Evaluating infection and fatality data from more than 100 
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countries, territories, and US states, this question was indeed affirmatively answered (Ukaj et al, 
2021, Scheiner et al, 2020). Here we go a step further, and discuss recently obtained results (Ukaj et 
al, 2023) for “aging pandemics” in analogy to aging creep experienced in shotcrete systems where 
the material maturation due to the hydration reaction evolves at a similar pace as the creep strains 
do. In this case, it turned out beneficial to formulate Boltzmann’s accumulation or superposition 
principle in rate form (Scheiner and Hellmich, 2009): corresponding creep rate functions associated 
to a particular maturation degree are again convoluted over the entire load history, but they are only 
valid for one single point in time, namely then when the aforementioned maturation degree has been 
attained.  

The remainder of the current paper is organized as follows: Section 2 introduces the theoretical 
framework for an aging fatality model, and Section 3 presents the underlying data recorded over the 
course of the COVID-19 pandemic. Numerical results are presented in Section 4, while respective 
conclusions are drawn in Section 5. 

2 DEVELOPMENT OF AN AGING FATALITY MODEL 

Following up on the proposition made in (Ukaj et al. 2021), we consider the COVID-19-related 
overall fatality trend as the cumulation of the fatalities developing due to the single, daily infection 
increments occurring (a few days up to a few weeks) prior to a certain point in time in the overall 
fatality trend. This notion is fully consistent with Boltzmann's famous “elastic after-effect” principle 
(Boltzmann 1874), the basis for hereditary mechanics; hence, the subscript “her” will be used to 
indicate this approach, see, e.g., Eq. (1). Furthermore, we here account for the possibility that 
parameters governing the corresponding kernel functions, called fatality functions in (Ukaj et al. 
2021), may change over time; this change coming as the result of e.g. improved treatment options or 
virus mutations during the considered epidemic event. From a mechanics of materials viewpoint, 
such changes in the kernel function relate to the phenomenon of “aging creep”, which necessitates 
modification of the traditional form of Boltzmann’s superposition principle. In more detail, following 
our creep law for aging concrete (Scheiner & Hellmich, 2009), where not one, but a series (time 
integral) of convolution integrals associated to different aging states, were employed, and where each 
of these convolution integrals gave access, not to the total creep strains, but to the creep strain rates, 
we formulate an integro-differential equation for the fatality rate at time 𝑡𝑡, 𝐹̇𝐹her = d𝐹𝐹her/d𝑡𝑡, with 𝐹𝐹her 
being the number of fatalities predicted by the hereditary mechanics-based model, reading 
mathematically as  
 

𝐹̇𝐹her(𝑡𝑡) = � 𝐽𝐽ḟ(𝜁𝜁 − 𝜏𝜏) 𝐶̇𝐶(𝜏𝜏)
𝑡𝑡

−∞

d𝜁𝜁 , (1) 

In Eq. (1), 𝐶̇𝐶 is the rate of infection numbers becoming effective at time 𝜏𝜏, 𝜁𝜁 is the integration (time) 
variable, and 𝐽𝐽ḟ is the rate of the fatality function, the analogue to the creep function in classical 
hereditary mechanics. Clearly, the fatality function needs to be defined such that it aligns with the 
actual transition from infections into corresponding fatalities. In the following, we consider to that 
end a very simple option, discussed in more detail in Ukaj et al (2023): a certain fraction of the 
infections recorded at time 𝜏𝜏 translates into fatalities after a time delay in step-wise fashion. Hence, 
the respective rate of such as fatality function reads as 
 

𝐽𝐽ḟ(𝜁𝜁 − 𝜏𝜏) = 𝑓𝑓f(𝜁𝜁) 𝛿𝛿(𝜁𝜁 − 𝜏𝜏 − 𝑇𝑇f) . (2) 

In Eq. (2), 𝑓𝑓f denotes the fatality fraction at time 𝜁𝜁, 𝛿𝛿(𝜁𝜁 − 𝜏𝜏 − 𝑇𝑇f) denotes the Dirac delta function, 
with 𝛿𝛿 = 0 if 𝜁𝜁 ≠ 𝜏𝜏 + 𝑇𝑇f, and 𝛿𝛿 = ∞ if 𝜁𝜁 = 𝜏𝜏 + 𝑇𝑇f, and 𝑇𝑇f denotes the characteristic time of fatal 
illness; implying that 
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� 𝛿𝛿(𝜁𝜁 − 𝜏𝜏 − 𝑇𝑇f) d𝜁𝜁 = 1
∞

−∞

 . (3) 

Hence, considering Eq. (2) in Eq. (1) leads to 

𝐹̇𝐹her(𝑡𝑡) = 𝑓𝑓f(𝑡𝑡) 𝐶̇𝐶(𝑡𝑡 − 𝑇𝑇f) . (4) 

Next, we need to find reasonable approximations for the fatality and infection rates. To that end, we 
consider 

𝐹̇𝐹her(𝑡𝑡) =
Δ𝐹𝐹her(𝑡𝑡)
Δ𝑡𝑡

  and     𝐶̇𝐶(𝑡𝑡) =
Δ𝐶𝐶(𝑡𝑡)
Δ𝑡𝑡

 . (5) 

Typically, Δ𝑡𝑡 = 1 d, implying that Δ𝐹𝐹her and Δ𝐶𝐶 are the daily fatality and infection increments. 
Inserting Eq. (5) in Eq. (4), and integrating the resulting equation with respect to Δ𝑡𝑡 yields 

Δ𝐹𝐹her(𝑡𝑡) = 𝑓𝑓f(𝑡𝑡) Δ𝐶𝐶(𝑡𝑡 − 𝑇𝑇f) . (6) 

Since recorded infections are not available continuously, but at discrete time points (i.e., at each day), 
Eq. (6) is employed accordingly, 

Δ𝐹𝐹her(𝑡𝑡𝑛𝑛) = 𝑓𝑓f(𝑡𝑡𝑛𝑛) Δ𝐶𝐶(𝑡𝑡𝑛𝑛 − 𝑇𝑇f), (7) 

where 𝑡𝑡𝑛𝑛 = 𝑛𝑛 Δ𝑡𝑡, 𝑛𝑛 = 1 …𝑁𝑁𝑡𝑡, 𝑁𝑁𝑡𝑡 being the number of considered points in time, 𝑁𝑁𝑡𝑡 = 1000 days, 
and (as already mentioned above) Δ𝑡𝑡 = 1 d. At a specific point in time, 𝑡𝑡𝑚𝑚, the total number of 
fatalities thus reads as 

𝐹𝐹her(𝑡𝑡𝑚𝑚) = �Δ𝐹𝐹her(𝑡𝑡𝑛𝑛)
𝑚𝑚

𝑛𝑛=1

= �𝑓𝑓f(𝑡𝑡𝑛𝑛) Δ𝐶𝐶(𝑡𝑡𝑛𝑛 − 𝑇𝑇f)
𝑚𝑚

𝑛𝑛=1

 . (8) 

3 CONSIDERED DATA 

In this contribution, we focus on the data acquired in Austria for the first 1000 days of the pandemic 
(i.e., from February 25, 2020 until November 20, 2022), considering as data source the reference 
website Worldometer (Worldometer 2023). In particular, the following data is needed for model 
calibration and evaluation: daily infection numbers (i.e., the daily reported coronavirus-positive test 
results), Δ𝐶𝐶, and the daily number of people that deceased due to COVID-19, Δ𝐹𝐹. In order to filter 
out data collection irregularities, the trends of the daily infection and fatality numbers were subject 
to smoothing (considering for that purpose the 7-day moving average). 

4 MODEL APPLICATION AND NUMERICAL RESULTS 

The model presented in Section 2 has already been evaluated in quite similar form in (Scheiner et al. 
2020 and Ukaj et al. 2021), revealing that for a pandemic model relating recorded infection numbers 
with the corresponding fatality trends, consideration of the time delay between infections and 
fatalities is crucial. Notably, in both works, (piecewise) constant model parameters were considered. 
However, with COVID-19 pandemic developing over a time span over some two to three years, it is 
easy to see that the effects of COVID-19 have decreased in severity, due to mutations of the virus, 
treatment options, and the buildup of immunity and resistance due to previous infections and 
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vaccinations. In this contribution, these effects are accounted for, in terms of varying model 
parameters. 

In particular, the model presented in Section 2 has been evaluated in two different ways. Firstly, 
we have back-calculated combinations of the two model parameters governing Eqs. (7) and (8), based 
on which the recorded fatality trend is precisely related, via Eqs. (7) and (8), to the recorded infection 
trend. To that end, we rearrange Eq. (7) as follows: 

𝑓𝑓f(𝑡𝑡𝑛𝑛) =
Δ𝐹𝐹(𝑡𝑡𝑛𝑛)

Δ𝐶𝐶(𝑡𝑡𝑛𝑛 − 𝑇𝑇f)
 . (9) 

Varying the characteristic time of fatal illness, 𝑇𝑇f, between 0 and 50 days, the corresponding fatality 
fraction, 𝑓𝑓f, can be straightforwardly computed, see Figure 1.  

Figure 1. Developments of the fatality fraction ff computed by means of Eq. (9), considering different values 
of the characteristic time of fatal illness, Tf. Note that, for the sake of better readability, physically 

meaningless values of ff are cut off at 1. 

Secondly, we infer from the results of the first study that parameter 𝑓𝑓f decays over time, and that this 
decay can be approximated by an exponential function, defined via parameters a and b, 

𝑓𝑓f(𝑡𝑡) = 𝑎𝑎 exp(−𝑏𝑏 𝑡𝑡) . (10) 

Inserting Eq. (10) into Eq. (8) allows for finding the combination of parameters a and b which yields 
the minimum error between model predictions, 𝐹𝐹her, and observations, 𝐹𝐹. Thereby, the computed 
errors, and consequently the optimal parameter combinations depend on 𝑇𝑇f as well; hence, it is varied 
again between 0 and 50. Mathematically, this task can be written as follows: 

min(𝐸𝐸) = min�
1
𝑁𝑁
�|𝐹𝐹(𝑡𝑡𝑛𝑛) − 𝐹𝐹her(𝑡𝑡𝑛𝑛)|
𝑁𝑁𝑡𝑡

𝑛𝑛=1

� → 𝑎𝑎opt�𝑇𝑇𝑓𝑓�, 𝑏𝑏opt�𝑇𝑇𝑓𝑓� . (11) 

In Eq. (11), 𝐸𝐸 denotes the average absolute error between the recorded fatalities F and the model-
predicted ones, 𝐹𝐹her, according to Eq. (8), considering for that purpose the aforementioned 1000 first 
days of the pandemic; hence, 𝑁𝑁𝑡𝑡 = 1000 days. Figure 2 shows the numerical results of this 
optimization task. In particular, Figure 2(a) clearly indicates that the minimum error is obtained when 
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setting 𝑇𝑇f = 28 days. Figure 2(b), in turn, is concerned with the question, whether this optimization 
task yields a unique pair of parameters at all (considering 𝑇𝑇f = 28 days). The unambiguous peak of 
𝐸𝐸−1 confirms the true “optimality” of the parameter pair aopt = 0.12186 and bopt = 0.0055901 d-1 (with 
the related error amounting to 439.9245). Finally, Figure 3 shows the satisfying agreement between 
F and 𝐹𝐹her, and corroborates that a simple exponential function is able to describe the development 
of the parameters governing a pandemic model reasonably well. 

(a) (b) 

Figure 2. (a) Minimum error obtained through evaluation of Eq. (11) for Tf ranging from 0 to 50, with the 
minimum error indicated at 𝑇𝑇f = 28 days; (b) The inverse of the mean error, according to Eq. (11), for the 
considered ranges of parameters a and b, with aopt = 0.1286 and bopt = 0.0055901 d-1 turning out as optimal 

parameters. 

Figure 3. Comparison of recorded and model-predicted fatalities, together with the corresponding trend of the 
fatality fraction fF. 

5 SUMMARY AND CONCLUSIONS 

This contribution presented an aging pandemic model, inspired by Boltzmann’s famous 
superposition principle, relating recorded infection trends to the corresponding fatality trends. A 
numerical study based on the COVID-19 data recorded in Austria corroborates the soundness of this 
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approach, which may motivate research programs in the field of coupled integro-differential 
equations as a new avenue in mathematical biology, thereby overcoming limitations of the currently 
overwhelmingly popular SIR-models in state-of-the-art epidemiology (Fanelli & Piazza 2020; 
Kermack & McKendrick 1927). As a first step in this direction, aging pandemic modeling can be 
expanded from Austria to a global scale – similar to our hereditary epidemiology investigations 
reported in (Ukaj et al. 2021) for the non-aging case. Furthermore, nature and format of the fatality 
rate function deserves further scrutiny. Such activities are currently going on (Ukaj et al, 2023). 

In conclusion, this study shows that old engineering fields, such as geomechanics or concrete 
engineering, and their proven theoretical concepts, such as the superposition principle or aging, may 
provide unexpected blueprints for new modeling endeavors driven by comparably young fields, such 
as computational epidemiology. Hence, in order to frame the insights gained by the present study in 
the most general way, reinventing the wheel may not be necessary to address the pending questions 
of our time, and maintaining an inter- and multidisciplinary perspective indeed promises routes to 
smart and swift solutions of intricate problems, which otherwise would not be accessible. 
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